首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
《中国化学快报》2020,31(12):3190-3194
Biomimetic scaffolds present the promising potential for bone regeneration. As a natural gel-like traditional food, tofu with porous architecture and proved biological safety indicated a good potential to be a natural scaffold and easy to be improved by surface modification. Hereon, we fabricated the tofu-based scaffolds and systematically explored the potential for bone tissue engineering. In addition, the collagen has been introduced by simple coating to further enhance the surface compatibility of the tofu-based scaffold in bone regeneration. The results showed that the tofu-based scaffolds possessed good porous structure and cytocompatibility. Notably, the tofu-based scaffolds could improve the expression of osteogenesis-related genes and proteins, leading to better bone regeneration after 2 months of implantation. All the results indicated that tofu would become an outstanding sustainable natural porous scaffold for bone regeneration with excellent bioactivities.  相似文献   

2.
A high incidence of bone defects and the limitation of autologous bone grafting require 3 D scaffolds for bone repair. Compared with synthetic materials, natural edible materials possess outstanding advantages in terms of biocompatibility, bioactivities and low manufacturing cost for bone tissue engineering. In this work, attracted by the natural porous/fabric structure, good biocompatibility and bioactivities of the lotus root, the lotus root-based scaffolds were fabricated and investigated the...  相似文献   

3.
Designing and fabricating nanocomposite scaffolds for bone regeneration from different biodegradable polymers and bioactive materials are an essential step to engineer tissues. In this study, the composite scaffold of gelatin/hyaluronic acid (Gel/HA) containing nano-bioactive glass (NBG) was prepared by using freeze-drying method. The biocompatibilities in-vitro of the Gel-HA/NBG composite scaffolds, including MTT assay, ALP activity, von Kossa staining and tetracycline staining, were investigated. The SEM observations revealed that the prepared scaffolds were porous with three-dimensional (3D) and interconnected microstructure, agglomerated NBG particles were uniformly dispersed in the matrix. MTT results indicated that the tested materials didn't show any cytotoxicity. The presence of NBG in the composite scaffold further enhanced the ALP activity in comparison with the pure Gel/HA scaffold. The von Kossa staining and tetracycline staining results also indicated that the NBG may improve the cell response. Therefore, the results indicated the nanocomposite scaffold made from Gel, HA and NBG particles could be considered as a potential bone tissue engineering implant.  相似文献   

4.
将胶原绑定结构域(CBD)多肽序列与骨形态发生蛋白2模拟肽(BMP2-MP)序列连接制备具有胶原绑定能力的CBD-BMP2-MP, 再将CBD-BMP2-MP与聚丙交酯-乙交酯/胶原(PLGA/COL)3D打印支架相结合, 以支架表面的胶原成分为媒介, 将CBD-BMP2-MP更有效地固定于骨修复材料上, 达到对其进行改性的目的. 利用扫描电子显微镜(SEM)、 电子万能试验机和接触角测量仪对复合支架表面形貌、 力学强度和亲水性等材料学性能进行评价. 用荧光成像法评测 CBD-BMP2-MP及BMP2-MP与支架材料的结合能力. 在各组支架材料表面接种MC3T3-E1细胞进行体外培养, 采用CCK-8、 鬼笔环肽荧光染色、 茜素红染色及qPCR综合评价细胞在材料表面的黏附、 增殖和成骨分化等细胞行为, 研究CBD-BMP2-MP修饰的3D多孔PLGA/COL复合支架的生物学性能. 研究结果表明, 利用3D打印技术制备的多孔支架具有形貌可控的孔隙结构, 为细胞生长创造更有利的细胞微环境, 支架表面胶原成分的加入提高了支架材料的亲水性, 同时对支架材料本身的力学性能无任何影响, 提高了复合支架本身的生物相容性. 与普通BMP2-MP相比, CBD-BMP2-MP具有更好的胶原绑定能力, 与复合支架的结合更稳定, 提高了PLGA/COL复合支架对BMP2-MP的负载能力. 支架表面负载CBD-BMP2-MP后具有极强的促细胞成骨分化能力. MC3T3-E1细胞表现出更高的钙沉积能力, 并且成骨分化相关基因Runx2, ALP, COL-I及OPN等水平也有了明显提升. 表明CBD-BMP2-MP多孔复合支架具有良好的生物相容性和成骨诱导活性, 在骨组织修复领域具有良好的应用前景.  相似文献   

5.
Porous β-tricalcium phosphate (β-TCP) has been used for bone repair and replacement in clinics due to its excellent biocompatibility, osteoconductivity, and biodegradability. However, the application of β-TCP has been limited by its brittleness. Here, we demonstrated that an interconnected porous β-TCP scaffold infiltrated with a thin layer of poly(lactic-co-glycolic acid) (PLGA) polymer showed improved mechanical performance compared to an uncoated β-TCP scaffold while retaining its excellent interconnectivity and biocompatibility. The infiltration of PLGA significantly increased the compressive strength of β-TCP scaffolds from 2.90 to 4.19 MPa, bending strength from 1.46 to 2.41 MPa, and toughness from 0.17 to 1.44 MPa, while retaining an interconnected porous structure with a porosity of 80.65%. These remarkable improvements in the mechanical properties of PLGA-coated β-TCP scaffolds are due to the combination of the systematic coating of struts, interpenetrating structural characteristics, and crack bridging. The in vitro biological evaluation demonstrated that rat bone marrow stromal cells (rBMSCs) adhered well, proliferated, and expressed alkaline phosphatase (ALP) activity on both the PLGA-coated β-TCP and the β-TCP. These results suggest a new strategy for fabricating interconnected macroporous scaffolds with significantly enhanced mechanical strength for potential load-bearing bone tissue regeneration.  相似文献   

6.
《Arabian Journal of Chemistry》2020,13(10):7418-7429
In the current study, a porous 3D scaffold using Gallium-Apatite/chitin/pectin (Ga-HA/C/P) nanocomposites scaffolds (NCS) were fabricated by freeze-drying process with applications in orthopedics (bone tissue engineering). Various NCSs (0%, 30%, 50 and 70%) were prepared and characterized for its chemical structure, crystalline phase, surface texture by using various techniques such as FT-IR, XRD and SEM-EDX, respectively. The analyses of physicochemical properties proved that the formulated scaffolds were highly porous, and mechanically stable with superior density. The nanocomposite scaffolds also presented with increased swelling ability, lower biodegradation rate and higher mechanical strength. Further, biocompatibility and cytotoxicity of Ga-HA/C/P nanocomposite scaffolds were studied using NIH3T3 cells and MG-63 cells revealed no toxicity and cells attached and proliferated on scaffolds. Further implantation of prepared NCS showed mature bone formation through formation of new bone cells and osteoblast differentiation. Also, Ga-HA/C/P nanocomposites scaffolds proved to be more effective than chitin-pectin composite scaffolds. Taking results together it can be inferred that the prepared nanocomposite scaffolds possesses the prerequisites and showed great potential for treating orthopedic applications.  相似文献   

7.
Bone‐derived extracellular matrix (ECM) is widely used in studies on bone regeneration because of its ability to provide a microenvironment of native bone tissue. However, a hydrogel, which is a main type of ECM application, is limited to use for bone graft substitutes due to relative lack of mechanical properties. The present study aims to fabricate a scaffold for guiding effective bone regeneration. A polycaprolactone (PCL)/beta‐tricalcium phosphate (β‐TCP)/bone decellularized extracellular matrix (dECM) scaffold capable of providing physical and physiological environment are fabricated using 3D printing technology and decoration method. PCL/β‐TCP/bone dECM scaffolds exhibit excellent cell seeding efficiency, proliferation, and early and late osteogenic differentiation capacity in vitro. In addition, outstanding results of bone regeneration are observed in PCL/β‐TCP/bone dECM scaffold group in the rabbit calvarial defect model in vivo. These results indicate that PCL/β‐TCP/bone dECM scaffolds have an outstanding potential as bone graft substitutes for effective bone regeneration.  相似文献   

8.
The development of tissue engineering scaffolds is of great significance for the repair and regeneration of damaged tissues and organs. Silk fibroin (SF) is a natural protein polymer with good biocompatibility, biodegradability, excellent physical and mechanical properties and processability, making it an ideal universal tissue engineering scaffold material. Nanofibers prepared by electrospinning have attracted extensive attention in the field of tissue engineering due to their excellent mechanical properties, high specific surface area, and similar morphology as to extracellular matrix (ECM). The combination of silk fibroin and electrospinning is a promising strategy for the preparation of tissue engineering scaffolds. In this review, the research progress of electrospun silk fibroin nanofibers in the regeneration of skin, vascular, bone, neural, tendons, cardiac, periodontal, ocular and other tissues is discussed in detail.  相似文献   

9.
Three-dimensional biodegradable porous scaffolds play an important role in tissue engineering. The degradable scaffold material, based on 1,4-butanediamine-modified poly(lactide-co-glycolide) (BMPLGA), nano-bioactive glass (NBAG), and nano-β-tricalciumphosphate (β-TCP), was prepared by a solution-casting/salt-leaching method. The biological properties were studied by using cell cytotoxicity, von Kossa staining, alkaline phosphatase activity, hemolytic test, acute toxicity, and genetic toxicity test. The MTT results indicated that the BMPLGA/NBAG-β-TCP materials did not show any cytotoxicity. The result of von Kossa staining showed that the introduction of the NBAG and β-TCP promoted fibroblastic differentiation and improved the mineral deposition of the BMPLGA matrix. In addition, the presence of NBAG and β-TCP in the composite further enhanced the ALP activity in comparison with the sole BMPLGA material. The hemolytic potential showed that the nanocomposite scaffolds were non-hemolytic. The BMPLGA/NBAG-β-TCP scaffolds showed no acute systemic toxicity or mutagenic action. Therefore, the results indicated the BMPLGA/NBAG-β-TCP nanocomposite scaffold could be considered as a potential bone tissue engineering implant.  相似文献   

10.
Summery: As a tooth is composed of hard tissue covering pulp, it may be suitable for tooth regeneration to use porous cylindrical hydroxyapatite (HA) scaffolds with a hollow center. Generally, in vivo examination, bone marrow cell suspension for osteogenesis in cell/HA composite scaffold without subculture is prepared at a density of 1 × 107 cells/ml or higher. In dentistry, stem cells would be obtained from tooth pulp. For dentine formation, a smaller number of stem cells must be used. In this study, a suspension of rat bone marrow cells at 1 × 106 cells/ml of density was prepared to estimate the adhesive effect of laminin. After immersion of HA scaffold in laminin solution, bone marrow cells were seeded in the pores of the HA scaffolds by immersion in the cell suspension for preparing the cell/HA composite scaffolds. The specimens were respectively implanted in the dorsal subcutis of 7-week-old male Fischer 344 rats for 4 weeks for histological examination. Comparing with the results of in vivo examination, alkaline phosphatase activity of bone marrow cells on laminin-coated plate with and without dexamethasone cultured for 2 weeks was measured in vitro. It was considered that laminin contributed to bone formation in pores of a scaffold.  相似文献   

11.
A nano-structured scaffold was designed for bone repair using collagen, hyaluronic acid (HYA) and nano-bioactive glass (NBaG) as its main components. The collagen-HYA/NBaG scaffold was prepared by using a freeze-drying technique and characterized by scanning electron microscopy (SEM). Osteoblastls were seeded on these scaffolds and their proliferation rate, alkaline phosphatase (ALP) activity and ability to form mineralized bone nodules were compared with those osteoblasts grown on cell culture plastic surfaces. The cross-section morphology shows that the collagen-HYA/NBaG scaffold possessed a three-dimensional (3D) interconnected homogenous porous structure. The results obtained from biological assessment show that this scaffold did not negatively affect osteoblasts proliferation rate and improves osteoblasts function as shown by increasing the ALP activity and calcium deposition and formation of mineralized bone nodules. Therefore, the composite scaffolds could provide a favorable environment for initial cell adhesion, maintained cell viability and cell proliferation, and had good in-vitro biocompatibility.  相似文献   

12.
Electrospun nanofibers are of the same length scale as the native extracellular matrix and have been extensively reported to facilitate adhesion and proliferation of cells and to promote tissue repair and regeneration. With a primary focus on tissue repair and regeneration using electrospun scaffolds, only a few studies involved electrospun nanofiber scaffolds directing cell behaviors have been reported. In this study, we prepared electrospun nanofiber scaffolds with distinct fiber configurations, namely, random and aligned orientations of nanofibers, as well as oriented yarns, and investigated their effects on cell behaviors. Our results showed that these scaffolds supported good proliferation and viability of murine fibroblasts. Fiber configuration profoundly influenced cell morpho-logy and orientation but showed no effects on cell proliferation rate. The yarn scaffold had comparable total protein accumulation with the random and aligned scaffolds, but it supported a greater pro-liferation rate of fibroblasts with significantly elevated collagen de-position due to its porous fibrous configuration. Cell-seeded yarn scaffolds showed a greater Young's modulus compared with cell-free controls as early as 1 week. Together with its unique fiber configuration similar to the native extracellular matrix of the myocardium, the yarn scaffold might be a suitable matrix material for modeling cardiac fibrotic disorders.  相似文献   

13.
To develop a novel tissue engineering scaffold with the capability of controlled releasing BMP-2-derived synthetic peptide, porous poly(lactic acid)/chitosan microspheres (PLA/CMs) composites containing different quantities of chitosan microspheres were prepared by a thermally induced phase separation method. FTIR analysis revealed that there were strong hydrogen bond interactions between the PLA and chitosan component. Introduction of less than 30% CMs (on PLA weight basis) did not remarkably affect the morphology and porosity of the PLA/CMs scaffolds. The compressive strength of the composite scaffolds increased from 0.48 to 0.66 MPa, while the compressive modulus increased from 7.29 to 8.23 MPa as the microspheres' contents increased from 0% to 50%. In vitro degradability investigation indicated that the dissolution of chitosan component was preferential than PLA matrix and the inclusion of CMs could neutralize the acidity of PLA degradation products. Compared with the rapid release from CMs, the synthetic peptide was released from PLA/CMs scaffolds in a temporally controlled manner, mainly depending on the degradation of PLA matrix. The promising microspheres based scaffold release system can be used to deliver bioactive factors for a variety of non-loaded bone regeneration and tissue engineering application.  相似文献   

14.
Cellulose nanocrystal-reinforced poly(vinyl alcohol)/silica glass hybrid scaffolds were fabricated using the freeze-drying method. In this study, we develop molecular-level-based hybrid scaffolds with possible bioactivity behavior by adding silica sol–gel. The results showed a highly porous structure and a significant improvement in mechanical performance (stiffness) of hybrid scaffolds with an increased content of cellulose nanocrystals followed by the addition of silica-based bioactive glass. In vitro cell study with MC3T3-E1 cells on hybrid scaffolds for 1 and 3 days revealed good cell adhesion and growth. Thus, the obtained hybrid scaffold may be a competitive candidate for bone tissue engineering applications.  相似文献   

15.
In this research, the novel three-dimensional (3D) porous scaffolds made of poly(lactic-co-glycolic acid) (PLGA)/nano-fluorohydroxyapatite (FHA) composite microspheres was prepared and characterize for potential bone repair applications. We employed a microsphere sintering method to produce 3D PLGA/nano-FHA scaffolds composite microspheres. The mechanical properties, pore size, and porosity of the composite scaffolds were controlled by varying parameters, such as sintering temperature, sintering time, and PLGA/nano-FHA ratio. The experimental results showed that the PLGA/nano-FHA (4:1) scaffold sintered at 90 °C for 2 h demonstrated the highest mechanical properties and an appropriate pore structure for bone tissue engineering applications. Furthermore, MTT assay and alkaline phosphatase activity (ALP activity) results ascertained that a general trend of increasing in cell viability was seen for PLGA/nano-FHA (4:1) scaffold sintered at 90 °C for 2 h by time with compared to control group. Eventually, obtained experimental results demonstrated PLGA/nano-FHA microsphere-sintered scaffold deserve attention utilizing for bone tissue engineering.  相似文献   

16.
In this work, we developed a simple and flexible method to manufacture a 3D porous scaffold based on the blend of regenerated silk fibroin (RSF) and chitosan (CS). No crosslinker or other toxic reagents were used in this method. The pores of resulted 3D scaffolds were connected with each other, and their sizes could be easily controlled by the concentration of the mixed solution. Compared with pure RSF scaffolds, the water absorptivities of these RSF/CS blend scaffolds with significantly enhanced mechanical properties were greatly increased. The results of MTT and RT-PCR tests indicated that the chondrocytes grew very well in these blend RSF/CS porous scaffolds. This suggested that the RSF/CS blend scaffold prepared by this new method could be a promising candidate for applications in tissue engineering.  相似文献   

17.
通过原位沉淀法和冷冻相分离技术得到含有钙磷前驱体(CaP)的初始多孔支架, 利用多孔支架表面原位生成的壳聚糖(CS)膜减缓NaOH溶液中OH-离子的渗透速率, 以达到纳米羟基磷灰石(nHA)缓慢形成的目的, 从而制得nHA 分布均匀的CS/nHA多孔复合支架. 利用扫描电镜(SEM)和万能试验机研究复合支架的结构和性能, 发现nHA为针状结构, 长度为80200 nm, 宽度为2050 nm. 随着nHA含量的增加, 复合支架的孔隙率下降, 由(93.8±3.3)%降至(87.7±3.8)%, 压缩强度则逐渐提高, 由(0.5±0.09) MPa增加至(1.5±0.06) MPa. 当复合支架中nHA质量分数为25%时, 未发现nHA团聚现象, nHA均匀地分布于CS基体中. 通过红外光谱(FTIR)、 X射线衍射(XRD)及X射线光电子能谱(XPS)等分析推断, nHA与CS之间可能存在配位和氢键作用. 细胞实验结果表明, CS/nHA多孔复合支架具有良好的生物相容性, 细胞在支架内部贴壁黏附生长. CS/nHA多孔复合支架有望在骨组织工程领域具有良好的应用前景.  相似文献   

18.
《先进技术聚合物》2018,29(1):451-462
Scaffold, an essential element of tissue engineering, should provide proper physical and chemical properties and evolve suitable cell behavior for tissue regeneration. Polycaprolactone/Gelatin (PCL/Gel)‐based nanocomposite scaffolds containing hydroxyapatite nanoparticles (nHA) and vitamin D3 (Vit D3) were fabricated using the electrospinning method. Structural and mechanical properties of the scaffold were determined by scanning electron microscopy (SEM) and tensile measurement. In this study, smooth and bead‐free morphology with a uniform fiber diameter and optimal porosity level with appropriate pore size was observed for PCL/Gel/nHA nanocomposite scaffold. The results indicated that adding nHA to PCL/Gel caused an increase of the mechanical properties of scaffold. In addition, chemical interactions between PCL, gelatin, and nHA molecules were shown with XRD and FT‐IR in the composite scaffolds. MG‐63 cell line has been cultured on the fabricated composite scaffolds; the results of viability and adhesion of cells on the scaffolds have been confirmed using MTT and SEM analysis methods. Here in this study, the culture of the osteoblast cells on the scaffolds showed that the addition of Vit D3 to PCL/Gel/nHA scaffold caused further attachment and proliferation of the cells. Moreover, DAPI staining results showed that the presence and viability of the cells were greater in PCL/Gel/nHA/Vit D3 scaffold than in PCL/Gel/nHA and PCL/Gel scaffolds. The results also approved increasing cell proliferation and alkaline phosphatase (ALP) activity for MG‐63 cells cultured on PCL/Gel/nHA/Vit D3 scaffold. The results indicated superior properties of hydroxyapatite nanoparticles and vitamin D3 incorporated in PCL/Gel scaffold for use in bone tissue engineering.  相似文献   

19.
Interconnected porous hydroxyapatite (HA) scaffolds are widely used for bone repair and replacement, owing to their ability to support the adhesion, transfer, proliferation and differentiation of cells. In the present study, the polymer impregnation approach was adopted to produce porous HA scaffolds with three-dimensional (3D) porous structures. These scaffolds have an advantage of highly interconnected porosity (≈85%) but a drawback of poor mechanical strength. Therefore, the as-prepared HA scaffolds were lined with composite polymer coatings in order to improve the mechanical properties and retain its good bioactivity and biocompatibility at the same time. The composite coatings were based on poly(d,l-lactide) (PDLLA) polymer solutions, and contained single component or combination of HA, calcium sulfate (CS) and chondroitin sulfate (ChS) powders. The effects of composite coatings on scaffold porosity, microstructure, mechanical property, in vitro mineralizing behavior, and cell attachment of the resultant scaffolds were investigated. The results showed that the scaffolds with composite coatings resulted in significant improvement in both mechanical and biological properties while retaining the 3D interconnected porous structure. The in vitro mineralizing behaviors were mainly related to the compositions of CS and ChS powders in the composite coatings. Excellent cell attachments were observed on the pure HA scaffold as well as the three types of composite scaffolds. These composite scaffolds with improved mechanical properties and bioactivities are promising bone substitutes in tissue engineering fields.  相似文献   

20.
《先进技术聚合物》2018,29(7):2050-2063
Electrospinning has been extensively used to construct tissue‐engineered scaffolds because of its ability to provide the fibrous scaffold with structurally analogous to the naturally occurring protein in the extracellular matrix of native tissues. In addition, the modification of scaffolds with bioactive molecules is beneficial as this can create an environment that consists of biochemical cues to further promote cell adhesion, proliferation, and differentiation. In the present contribution, we prepared and investigated the potential used of aligned electrospun poly(3‐hydroxybutyrate) (PHB) scaffold immobilized with bioactive molecule to serve as nervous scaffold. Laminin was successfully immobilized on the surface using covalent binding between functional groups of modified scaffolds and protein. The ability to use for neural regeneration was evaluated in vitro towards murine neuroblastoma Neuro2a cell line and mouse brain‐derived neural stem cells. The surface modification with laminin immobilized on the PHB fibrous scaffolds supported the attachment and promoted the proliferation of Neuro2a very wells. Despite the good attachment and proliferation of Neuro2a and mouse brain‐derived neural stem cells were not able to proliferate on the neat PHB, hydrolyzed PHB and laminin immobilized on hydrolyzed PHB fibrous scaffold.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号