首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
S L Gonias  S V Pizzo 《Biochemistry》1983,22(21):4933-4940
Human alpha 2-macroglobulin (alpha 2M) half-molecules were prepared by limited reduction and alkylation of the native protein. Reaction with plasmin resulted in nearly quantitative cleavage of the half-molecule Mr approximately 180000 subunits into Mr approximately 90000 fragments. Subunit cleavage was significantly less complete when plasmin was reacted with alpha 2M whole molecules. The plasmin and trypsin binding capacities of the two forms of alpha 2M were compared by using radioiodinated proteases. alpha 2M half-molecules bound an equivalent number of moles of plasmin or trypsin. Native unreduced alpha 2M bound only half as much plasmin as trypsin. These data are consistent with the hypothesis that the two protease binding sites are adjacent in native alpha 2M. alpha 2M half-molecule-plasmin complexes reassociated less readily than half-molecule-trypsin complexes, supporting this interpretation. The frequency of covalent bond formation between plasmin and alpha 2M was considerably higher than that previously observed with other proteases. Approximately 80-90% of the plasmin that reacted with alpha 2M whole molecules or half-molecules became covalently bound. The reactivities of purified alpha 2M-plasmin complexes were compared with small and large substrates. Equivalent kcat/Km values were determined at 22 degrees C for the hydrolysis of H-D-Val-Leu-Lys-p-nitroanilide dihydrochloride by whole molecule-plasmin complex and half-molecule-plasmin complex (40 mM-1 s-1 and 39 mM-1 s-1, respectively, compared with 66 mM-1 s-1 determined for free plasmin).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Streptokinase-human plasmin complex (Sk-hPm) reacted rapidly with purified mouse alpha 2-macroglobulin (m alpha 2M) in vitro at 37 degrees C. Approx. 98% of the plasmin in Sk-hPm bound covalently to at least one m alpha 2M subunit. Most of the streptokinase dissociated (95%). The rate of Sk-hPm inactivation clearly depended on the m alpha 2M concentration. With 1.2 microM-m alpha 2M, 50% of the Sk-hPm (0.02 microM) reacted in less than 50 s. A double-reciprocal plot comparing pseudo-first-order rate constants (kapp.) and m alpha 2M concentration yielded a second-order rate constant of 2.3 x 10(4) M-1.s-1 (r = 0.97). This value is an approximation, since Sk-hPm preparations are heterogeneous. Sk-hPm reacted with human alpha 2M (h alpha 2M), forming alpha 2M-plasmin complex (98% covalent). More than 99% of the streptokinase dissociated. The rate of reaction of Sk-hPm with h alpha 2M did not clearly depend on inhibitor concentration. The kapp. values determined with 0.6-1.2 microM-h alpha 2M were decreased 10-20-fold compared with m alpha 2M. In order to study the effect of Sk-hPm heterogeneity on the reaction with alpha 2M, the proteinase was incubated for various amounts of time at 37 degrees C before addition of inhibitor. The enzyme amidase activity was maximal within 5 min; however, reaction of Sk-hPm with m alpha 2M or h alpha 2M was most extensive after 20 min and 2 h respectively. After incubation for more than 1 h, Sk-hPm acquired fibrinogenolytic activity, suggesting plasmin dissociation. Therefore the enhanced reaction of h alpha 2M with 'older' Sk-hPm preparations may have resulted in part from dissociated plasmin or 'plasmin-like' species. By contrast, the reaction of Sk-hPm with m alpha 2M was most rapid when the proteinase preparation was free of plasmin, indicating direct reaction of Sk-hPm with m alpha 2M as the only major mechanism. Finally, streptokinase-cat plasminogen complex reacted more extensively with m alpha 2M than with h alpha 2M, suggesting that m alpha 2M may be a superior inhibitor with this class of plasminogen activators in general.  相似文献   

3.
Monoclonal antibodies 10-F-1, directed against the K4 region of plasminogen, and 10-V-1, directed against the K1-3 region of plasminogen, were adducted to colloidal gold. These antibody-gold adducts bound specifically to alpha 2-macroglobulin (alpha 2M)-plasmin. Greater than 90% of the apparent binding was eliminated when alpha 2M-methylamine was substituted for the alpha 2M-plasmin. The plasmin epitope recognized by 10-F-1 was identified at the extreme pole of the alpha 2M-plasmin complex, suggesting that plasmin protrudes from the end of the hollow cylinder formed by alpha 2M. The complexes formed between alpha 2M-plasmin and 10-V-1 were indistinguishable from those formed with 10-F-1. This suggests that exposure of plasmin surface structure in alpha 2M-plasmin, while substantial, may be limited to the single region of the inhibitor. Evidence for ternary complexes containing one alpha 2M and two plasmin molecules was obtained in the form of antibody-gold bound at both poles of alpha 2M-plasmin. The fraction of alpha 2M-plasmin that associated with more than one antibody was small. The data presented here are considered in relation to current models of alpha 2M structure and function.  相似文献   

4.
A general method is presented here for the determination of the Km, kcat, and kcat/Km of fluorescence resonance energy transfer (FRET) substrates using a fluorescence plate reader. A simple empirical method for correcting for the inner filter effect is shown to enable accurate and undistorted measurements of these very important kinetic parameters. Inner filter effect corrected rates of hydrolysis of a FRET peptide substrate by hepatitis C virus (HCV) NS3 protease at various substrate concentrations enabled measurement of a Km value of 4.4 +/- 0.3 microM and kcat/Km value of 96,500 +/- 5800 M-1 s-1. These values are very close to the HPLC-determined Km value of 4.6 +/- 0.7 microM and kcat/Km value of 92,600 +/- 14,000 M-1 s-1. We demonstrate that the inner filter effect correction of microtiter plate reader velocities enables rapid measurement of Ki and Ki' values and kinetic inhibition mechanisms for HCV NS3 protease inhibitors.  相似文献   

5.
Dihexanoylphosphatidylethanolamine (DiC6-PE) was prepared by phospholipase D catalyzed transphosphatidylation of dihexanoylphosphatidylcholine (DiC6-PC). Below the critical micellar concentration the pKa of the amino group is 9.4 +/- 0.05. The critical micellar concentration of the zwitterionic species is 5.3 +/- 0.2 mM, while that of the anionic species is 11.0 +/- 0.05 mM. Based on the pH dependence of the rate of hydroxide ion catalyzed hydrolysis, the second order rate constant for hydrolysis of the zwitterionic species is 0.70 +/- 0.021 s-1 M-1, while that for the anionic species is 0.040 +/- 0.011 s-1 M-1. The pH-dependence of phospholipase A2 catalyzed hydrolysis at substrate concentrations below the critical micellar concentration shows that the zwitterionic species is the preferred substrate, and the anionic species is either a competitive inhibitor of the hydrolysis of the zwitterionic species or poor substrate. DiC6-PE is hydrolyzed by C. adamanteus at about 1% the rate of DiC6-PC.  相似文献   

6.
We have previously described Kunitz-type serine proteinase inhibitors purified from Bauhinia seeds. Human plasma kallikrein shows different susceptibility to those inhibitors. In this communication, we describe the interaction of human plasma kallikrein with fluorogenic and non-fluorogenic peptides based on the Bauhinia inhibitors' reactive site. The hydrolysis of the substrate based on the B. variegata inhibitor reactive site sequence, Abz-VVISALPRSVFIQ-EDDnp (Km 1.42 microM, kcat 0.06 s(-1), and kcat/Km 4.23 x 10(4) M(-1) s(-1)), is more favorable than that of Abz-VMIAALPRTMFIQ-EDDnp, related to the B. ungulata sequence (Km 0.43 microM, kcat 0.00017 s(-1), and kcat/Km 3.9 x 10(2) M(-1) s(-1)). Human plasma kallikrein does not hydrolyze the substrates Abz-RPGLPVRFESPL-EDDnp and Abz-FESPLRINIIKE-EDDnp based on the B. bauhinioides inhibitor reactive site sequence, the most effective inhibitor of the enzyme. These peptides are competitive inhibitors with Ki values in the nM range. The synthetic peptide containing 19 amino acids based on the B. bauhinioides inhibitor reactive site (RPGLPVRFESPL) is poorly cleaved by kallikrein. The given substrates are highly specific for trypsin and chymotrypsin hydrolysis. Other serine proteinases such as factor Xa, factor XII, thrombin and plasmin do not hydrolyze B. bauhinioides inhibitor related substrates.  相似文献   

7.
An angiotensin-converting enzyme was isolated from human heart using N[-1(S)-carboxy-5-aminopentyl]glycyl-glycine as an affinity adsorbent. The isolation procedure resulted in an enzyme purified 1650-fold. The enzyme specific activity was 38.0 u./mg protein, Mr = 150 kD. The pH optimum for the angiotensin-converting enzyme towards Hip-His-Leu lies at 7.8, Km = 1.2 mM. The enzyme was inhibited by the substrate (Ks' = 14 mM). The enzyme effectively catalyzed the hydrolysis of angiotensin I (Km = 10 microM; kcat = 250 s-1). NaCl, CaCl2 as well as Na2SO4 in the absence of Cl- activated the enzyme, whereas CH3COONa and NaNO3 did not influence the enzyme activity. It was found that the bradykinin-potentiating factor inhibited the cardiac angiotensin-converting enzyme with IC50 = 4.0 X 10(-8) M.  相似文献   

8.
Meinnel T  Patiny L  Ragusa S  Blanquet S 《Biochemistry》1999,38(14):4287-4295
Series of substrates derivatives of peptide deformylase were systematically synthesized and studied for their capacities to undergo hydrolysis. Data analysis indicated the requirement for a hydrophobic first side chain and for at least two main chain carbonyl groups in the substrate. For instance, Fo-Met-OCH3 and Fo-Nle-OCH3 were the minimal substrates of peptide deformylase obtained in this study, while positively charged Fo-Nle-ArgNH2 was the most efficient substrate (kcat/Km = 4.5 x 10(5) M-1.s-1). On the basis of this knowledge, 3-mercapto-2-benzylpropanoylglycine (thiorphan), a known inhibitor of thermolysin, could be predicted and further shown to inhibit the deformylation reaction. The inhibition by this compound was competitive and proved to depend on the hydrophobicity at the P1' position. Spectroscopic evidence that the sulfur group of thiorphan binds next to the active site metal ion on the enzyme could be obtained. Consequently, a small thiopseudopeptide derived from Fo-Nle-OCH3 was designed and synthesized. This compound behaved as a competitive inhibitor of peptide deformylase with KI = 52 +/- 5 microM. Introduction of a positive charge to this thiopeptide via addition of an arginine at P2' improved the inhibition constant up to 2.5 +/- 0.5 microM, a value 4 orders of magnitude smaller than that of the starting inhibitors. Evidence that this inhibitor, imino[(5-methoxy-5-oxo-4-[[2-(sulfanylmethyl)hexanoyl]amino]pentyl )am ino]methanamine, binds inside the active site cavity of peptide deformylase, while keeping intact the 3D fold of the protein, was provided by NMR. A fingerprint of the interaction of the inhibitor with the residues of the enzyme was obtained.  相似文献   

9.
A major beta-glucosidase I and a minor beta-glucosidase II were purified from culture filtrates of the fungus Trichoderma reesei grown on wheat straw. The enzymes were purified using CM-Sepharose CL-6B cation-exchange and DEAE Bio-Gel A anion-exchange chromatography steps, followed by Sephadex G-75 gel filtration. The isolated enzymes were homogeneous in SDS-polyacrylamide gel electrophoresis and isoelectric focusing. beta-Glucosidase I (71 kDa) was isoelectric at pH 8.7 and contained 0.12% carbohydrate; beta-glucosidase II (114 kDa) was isoelectric at pH 4.8 and contained 9.0% carbohydrate. Both enzymes catalyzed the hydrolysis of cellobiose and p-nitrophenyl-beta-D-glucoside (pNPG). The Km and kcat/Km values for cellobiose were 2.10 mM, 2.45.10(4) s-1 M-1 (beta-glucosidase I) and 11.1 mM, 1.68.10(3) s-1 M-1 (beta-glucosidase II). With pNPG as substrate the Km and kcat/Km values were 182 microM, 7.93.10(5) s-1 M-1 (beta-glucosidase I) and 135 microM, 1.02.10(6) s-1 M-1 (beta-glucosidase II). The temperature optimum was 65-70 degrees C for beta-glucosidase I and 60 degrees C for beta-glucosidase II, the pH optimum was 4.6 and 4.0, respectively. Several inhibitors were tested for their action on both enzymes. beta-Glucosidase I and II were competitively inhibited by desoxynojirimycin, gluconolactone and glucose.  相似文献   

10.
Pre-steady-state and steady-state kinetics of the papain (EC 3.4.22.2)-catalyzed hydrolysis of N-alpha-carbobenzoxyglycine p-nitrophenyl ester (ZGlyONp) have been determined between pH 3.0 and 9.5 (I = 0.1 M) at 21 +/- 0.5 degrees C. The results are consistent with the minimum three-step mechanism involving the acyl X enzyme intermediate E X P: (Formula: see text). The formation of the E X S complex may be regarded as a rapid pseudoequilibrium process; the minimum values for k+1 are 8.0 microM-1 s-1 (pH less than or equal to 3.5) and 0.40 microM-1 s-1 (pH greater than 6.0), and that for k-1 is 600 s-1 (pH independent). The pH profile of k+2/Ks (= kcat/Km; Ks = k-1/k+1) reflects the ionization of two groups with pK' values of 4.5 +/- 0.1 and 8.80 +/- 0.15 in the free enzyme. The pH dependence of k+2 and k+3 (measured only at pH values below neutrality) implicates one ionizing group in the acylation and deacylation step with pK' values of 5.80 +/- 0.15 and 3.10 +/- 0.15, respectively. As expected from the pH dependences of k+2/Ks (= kcat/Km) and k+2, the value of Ks changes with pH from 7.5 X 10(1) microM (pH less than or equal to 3.5) to 1.5 X 10(3) microM (pH greater than 6.0). Values of k-2 and k-3 are close to zero over the whole pH range explored (3.0 to 9.5). The pH dependence of kinetic parameters indicates that at acid pH values (less than or equal to 3.5), the k+2 step is rate limiting in catalysis, whereas for pH values higher than 3.5, k+3 becomes rate limiting. The observed ionizations probably reflect the acid-base equilibria of residues involved in the catalytic diad of papain, His159-Cys25. Comparison with catalytic properties of ficins and bromelains suggests that the results reported here may be of general significance for cysteine proteinase catalyzed reactions.  相似文献   

11.
Granzyme B has been purified to homogeneity from the granules of a human cytolytic lymphocyte line, Q31, in an enzymatically active form by a three-step procedure. Q31 granzyme B hydrolyzed Na-t-butyloxycarbonyl-L-alanyl-L-alanyl-L-aspartyl (Boc-Ala-Ala-Asp) thiobenzyl ester with a kcat of 11 +/- 5 mol/s/mol enzyme and catalytic efficiency kcat/Km of 76,000 +/- 44,000 M-1 s-1. The hydrolysis of Boc-Ala-Ala-Asp thiobenzyl ester by crude Q31 Percoll fractions paralleled the tryptase activity for granule-containing fractions, which showed that granzyme B was associated with granules. When chromatographed on Sephacryl S-300, Q31 granzyme B eluted in two broad bands corresponding to dimer and monomer, both of which electrophoresed at 35 kDa in reducing NaDodSo4 polyacrylamide, and both of which showed a lag phase in assays. The lag phase in assays could be extended with 0.03 mM pepstatin. Upon elution from ion-exchange chromatography Q31 granzyme B electrophoresed at 32 kDa in reducing NaDodSO4 polyacrylamide and did not have a lag phase in assays. The amino-terminal sequence of the 32-kDa Q31 granzyme B was identical to four other human cytotoxic T-lymphocyte granzymes B in 18 of 18 positions sequenced. Purified Q31 granzyme B had a preference for substrates with Glu or Asp as the residue amino-terminal to the scissile bond; little or no activity was noted with oligopeptide substrates for trypsin-like, chymotrypsin-like, and elastase-like proteases. Human plasma alpha 1-protease inhibitor, human plasma alpha 2-protease macroglobulin, soybean and lima-bean trypsin inhibitors, bovine aprotinin, phosphoramidon, and chymostatin inhibited Q31 granzyme B. The inhibition by alpha 1-protease inhibitor was rapid enough to be of physiological significance.  相似文献   

12.
1. N-Acetyl-L-phenylalanylglycine 4-nitroanilide and its D-enantiomer were synthesized and characterized and used as substrates with which to evaluate stereochemical selectivity in papain (EC 3.4.22.2)-catalysed hydrolysis. 2. Kinetic analysis at pH 6.0, I 0.1, 8.3% (v/v) NN-dimethylformamide and 25 degrees C by using initial-rate data with [S] much less than Km and weighted non-linear regression provided values of kcat./Km for the catalysed hydrolysis of both enantiomers as (kcat./Km)L = 2040 +/- 48 M-1.S-1 and (kcat./Km)D = 5.9 +/- 0.07 M-1.S-1. These data, taken together with individual values of kcat. and Km for the hydrolysis of the L-enantiomer (a) estimated in the present work as kcat. = 3.2 +/- 1.2 S-1 and Km = 1.5 +/- 0.6 mM and (b) reported by Lowe & Yuthavong [(1971) Biochem. J. 124, 107-115] for the reaction at pH 6.0 in 10% (v/v) NN-dimethylformamide and 35 degrees C, as kcat. = 1.3 +/- 0.2 S-1 and Km = 0.88 +/- 0.1 mM, suggest that (kcat./Km)L congruent to 2000 M-1.S-1 and thus that (kcat./Km)L/(kcat./Km)D congruent to 330.3. Model building indicates that both enantiomeric 4-nitroanilides can bind to papain such that the phenyl ring of the N-acetylphenylalanyl group makes hydrophobic contacts in the S2 subsite with preservation of mechanistically relevant hydrogen-bonding interactions and that the main difference is in the positioning of the beta-methylene group. 4. The dependence of P2-S2 stereochemical selectivity of papain on the nature of the catalytic-site chemistry for reactions involving derivatives of N-acetylphenylalanine is discussed. The variation in the index of stereochemical selectivity (ratio of the appropriate kinetic or thermodynamic parameter for a given pair of enantiomeric ligands), from 330 for the overall acylation process of the catalytic act, through 40 and 31 for the reaction at electrophilic sulphur in 2-pyridyl disulphides respectively without and with assistance by (His-159)-Im(+)-H, to 5 for the formation of thiohemiacetal adducts by reaction at aldehydic carbon, is interpreted in terms of the extent to which conformational variation of the bound ligand in the catalytic-site region permits the binding mode of the -CH2-Ph group of the D-enantiomer to approach that of the L-enantiomer.  相似文献   

13.
Kinetic investigations on adenosine deaminase from calf intestinal mucosa by spectrophotometric monitoring of the reaction at 264, 270, or 228 nm show that this method does not produce artifactual inhibition by substrate excess up to 0.7 mM concentration, when either adenosine or 2'-deoxyadenosine are employed with calf adenosine deaminase. The evaluation of kinetic parameters for this system was carried out both by initial rate measurements and by numerical differentiation of time progress curves according to a recently published method (S. C. Koerber and A. L. Fink, 1987, Anal. Biochem. 165, 75-87). The following results were obtained by the latter method at pH 7.0 and 30 degrees C: for the conversion of adenosine to inosine, kcat = 251 +/- 15 s-1, KMs = 29.7 +/- 2.8 microM, KMp = 613 +/- 62 microM; for the conversion of 2'-deoxyadenosine to 2'-deoxyinosine, kcat = 283 +/- 17 s-1, KMs = 22.4 +/- 2.2 microM, KMp = 331 +/- 35 microM. At 285 nm, a slight negative deviation from Beer's law was observed for adenosine at concentrations higher than 0.9 mM. No deviation was found for inosine up to 2.0 mM at the same wavelength.  相似文献   

14.
The time course of the interaction between trypsin and a synthetic peptide corresponding to a segment (residues 676-703) of the bait region (residues 666-706) of human alpha 2-macroglobulin (alpha 2M) was studied by measuring the generation of cleavage products as a function of time by HPLC. Three primary cleavage sites for trypsin were present in the synthetic peptide. The fastest cleavage occurred at the bond corresponding to Arg696-Leu in alpha 2M with an estimated kcat/Km = 1-2 x 10(6) M-1.s-1. This value is of the same magnitude as that characterizing the interaction of alpha 2M and trypsin when taking into account the fact that alpha 2M is a tetramer, kcat/Km = 5 x 10(6) M-1.s-1 [Christensen, U. & Sottrup-Jensen, L. (1984) Biochemistry 23, 6619-6626]. The values of kcat/Km for cleavage at bonds corresponding to Arg681-Val and Arg692-Gly in alpha 2M were 1.5 x 10(5) M-1.s-1 and 1.3 x 10(5) M-1.s-1, respectively. Cleavage of intermediate product peptides was slower, with kcat/Km in the range 13-1.3 x 10(6) M-1.s-1. The value of Km determined for fast cleavage in the synthetic peptide was 8-10 microM. 1H-NMR spectroscopy indicated no ordered structure of the peptide. Hence, the very fast cleavage of the peptide is compatible with a loose structure that readily adopts a conformation favorable for recognition and cleavage by trypsin.  相似文献   

15.
The steady-state kinetic parameters of human alpha-thrombin and the alpha-thrombin-staphylocoagulase complex as to the chromogenic substrate, H-D-Phe-Pip-Arg-p-nitroanilide (S-2238), were determined. At pH 8.0 and 37 degrees C, the Km values for alpha-thrombin and the complex for S-2238 were 7.9 microM and 7.7 microM, respectively. The kcat of this amidase reaction catalyzed by the complex was 127 s-1, which had apparently decreased from the kcat of 197 s-1 determined for free alpha-thrombin. This difference in the kinetic parameter between alpha-thrombin and the complex was also observed using the fluorogenic substrate, Boc-Val-Pro-Arg-4-methylcoumaryl-7-amide. Moreover, the fibrinogen clotting activity of the alpha-thrombin-staphylocoagulase complex was less than half that of alpha-thrombin, suggesting that the alpha-thrombin active site in the complex is different in catalytic ability from that of free alpha-thrombin. Other evidence supporting this view was as follows: The alpha-thrombin-staphylocoagulase complex is insensitive to antithrombin III, the complex shows much weaker binding to hirudin, as compared to free alpha-thrombin, and the amidase pH-profiles of the complex and free alpha-thrombin differ from each other. These results indicate that the microenvironment of the active site of alpha-thrombin is significantly altered by the complex formation with staphylocoagulase.  相似文献   

16.
Zymographic analysis of the supernates from confluent cultures of a rat prostate adenocarcinoma cell line, PA-III, revealed the existence of two molecular forms of specific plasminogen activators, one of molecular weight of approximately 80 000 and another of approximate molecular weight of 45 000, in sodium dodecyl sulfate. The low molecular weight form has been purified 364-fold in 66% yield from the culture medium by a combination of gel filtration on Sephacryl S-200 and affinity chromatography on Sepharose 4B-benzamidine. The purified material possessed a specific activity of 192 000 urokinase CTA units mg-1. This enzyme displayed activity toward human Glu1-plasminogen, characterized by a Km of 1.7 +/- 0.2 microM and a Vmax of 0.53 +/- 0.1 pmol of plasmin min-1 unit-1. A synthetic chromogenic substrate, H-D-Ile-Pro-Arg-p-nitroanilide (S-2288), was found for the activator. The enzyme possessed a Km of 0.33 mM and a kcat of 55 s-1 for S-2288. The activator was found to be a serine protease, inhibited by diisopropyl fluorophosphate (iPr2PF). At a concentration of 1 mM iPr2PF, and 30 nM enzyme, the half-time of this inhibition was 3.8 min. The 45 000 molecular weight enzyme was found to be inhibited by rabbit antibodies to human urokinase, thus characterizing the activator as a member of the urokinase class. The 80 000 molecular weight enzyme was not neutralized by anti-human urokinase but was neutralized by rabbit anti-human melanoma activator, likely allowing it to be classified as the tissue activator type.  相似文献   

17.
Stopped-flow radiationless energy-transfer kinetics have been used to examine the effects of chloride on the hydrolysis of Dns-Lys-Phe-Ala-Arg by angiotensin converting enzyme. The kinetic constants for hydrolysis at pH 7.5 and 22 degrees C in the presence of 300 mM sodium chloride were KM = 28 microM and kcat = 110 s-1, and in its absence, KM = 240 microM and kcat = 68 s-1. The apparent binding constant for chloride was 4 mM, and the extent of chloride activation in terms of kcat/KM was 14-fold. The effects of chloride on the pre-steady-state were examined at 2 degrees C. In the presence of chloride, two distinct enzyme-substrate complexes were observed, suggesting multiple steps in substrate binding. The initial complex was formed during the mixing period (kobsd greater than 200 s-1) while the second complex was formed much more slowly (kobsd = 40 s-1 when [S] = 5 microM and [NaCl] = 150 mM). Strikingly, in the absence of chloride, only a single, rapidly formed enzyme-substrate complex was observed. These results are consistent with a nonessential activator kinetic mechanism in which the slow step reflects conversion of an initially formed complex, (E X Cl- X S)1, to a more tightly bound complex, (E X Cl- X S)2.  相似文献   

18.
A tissue carboxypeptidase-A-like enzyme was purified to apparent homogeneity from terminally differentiated epidermal cells of 2-day-old rats by potato inhibitor affinity chromatography followed by FPLC Mono Q column chromatography. The enzyme has an Mr of 35,000 as determined by SDS-polyacrylamide gel electrophoresis and HPLC gel filtration. It has a pH optimum of 8.5 for hydrolysis of benzyloxycarbonyl-Phe-Leu (Km = 0.22 mM, kcat = 57.9 s-1). The enzyme does not hydrolyze substrates with Arg, Lys and Pro at the C-terminal and Pro at the penultimate position. Angiotensin I was effectively hydrolyzed (Km = 0.06 mM, kcat = 6.48 s-1) and produced both des-Leu10-angiotensin I and angiotensin II. The enzyme activity, relatively stable at 4 degrees C and pH 8.0-10.5, was inactivated at pH values higher than 12.0 and lower than 5.0 or at 65 degrees C for 10 min. Inhibitor profiles of the epidermal enzyme also differed slightly from those of tissue carboxypeptidase A of pancreatic or mast cell origin.  相似文献   

19.
A monoclonal antibody was obtained from the fusion of spleen cells of mice, immunized with methylamine-treated alpha 2-macroglobulin (alpha 2M), with the myeloma cell line P3-X63-Ag8.653. A competitive binding assay demonstrated that the antibody was specific for a neoantigen expressed on alpha 2M when the inhibitor reacts with proteinases or with methylamine. When immobilized, the monoclonal antibody retained its ability to specifically bind alpha 2M-proteinase complexes or methylamine-treated alpha 2M, both of which could be quantitatively recovered from the immunoaffinity column by lowering the pH to 5.0. Binary alpha 2M-proteinase complexes of trypsin, plasmin, and thrombin, prepared by incubating large amounts of alpha 2M with a small amount of enzyme, were isolated by immunoaffinity chromatography. Each purified complex was characterized with regard to proteinase content, extent of alpha 2M subunit cleavage, extent of thiol ester hydrolysis, and extent of conformational change. Each complex contained 0.8-0.9 mol of proteinase/mol of inhibitor. In the alpha 2M-thrombin, alpha 2M-plasmin, and alpha 2M-trypsin complexes, approximately 50%, 60%, and 75% of the subunits are cleaved, respectively. Titration of sulfhydryl groups revealed that all purified binary complexes contained 2 +/- 0.5 mol of thiol/mol of complex, suggesting that each complex retains two intact thiol ester bonds. When the purified complexes were incubated with excess trypsin or with methylamine, an additional 1-2 mol of sulfhydryl/mol of complex could be titrated.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
An inhibitor of the plasma proteinase plasmin (EC 3.4.21.7) was partially purified from washed and lysed human blood platelets by (NH4)2SO4 fractionation and affinity chromatrography on Sepharose-linked purified plasminogen. The material contained none of the known plasma proteinase inhibitors when studied by crossed-immunoelectrophoresis and electroimmunoassay, but inhibited a clot-lysis-time assay and an esterolytic assay that used the synthetic substrate S-2251 (D-Val-Leu-Lys-p-nitroanilide). The inhibitory activity had the same mobility as the alpha 2-plasma proteins on preparative agarose-gel electrophoresis. Titration of the inhibitor preparation by active-site-titrated plasmin demonstrated a dissociation constant of approx. 0.1 nM. The inhibition was complete within 1 min. The inhibitor increased the mobility in agarose-gel electrophoresis of purified activator-free plasmin or 125I-labelled plasmin, as demonstrated by crossed-immunoelectrophoresis against specific immunoglobulins against plasminogen or by radioautography. The results strongly suggest the presence in platelets of a plasmin inhibitor different from the known plasma proteinase inhibitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号