首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The conjecture posed by Aujla and Silva [J.S. Aujla, F.C. Silva, Weak majorization inequalities and convex functions, Linear Algebra Appl. 369 (2003) 217-233] is proved. It is shown that for any m-tuple of positive-semidefinite n × n complex matrices Aj and for any non-negative convex function f on [0, ∞) with f(0) = 0 the inequality ?f(A1) + f(A2) + ? + f(Am)? ? ? f(A1 + A2 + ? + Am)? holds for any unitarily invariant norm ? · ?. It is also proved that ?f(A1) + f(A2) + ? + f(Am)? ? f(?A1 + A2 + ? + Am?), where f is a non-negative concave function on [0, ∞) and ? · ? is normalized.  相似文献   

2.
Nonlinear matrix equation Xs + AXtA = Q, where A, Q are n × n complex matrices with Q Hermitian positive definite, has widely applied background. In this paper, we consider the Hermitian positive definite solutions of this matrix equation with two cases: s ? 1, 0 < t ? 1 and 0 < s ? 1, t ? 1. We derive necessary conditions and sufficient conditions for the existence of Hermitian positive definite solutions for the matrix equation and obtain some properties of the solutions. We also propose iterative methods for obtaining the extremal Hermitian positive definite solution of the matrix equation. Finally, we give some numerical examples to show the efficiency of the proposed iterative methods.  相似文献   

3.
Suppose that p(XY) = A − BX − X(∗)B(∗) − CYC(∗) and q(XY) = A − BX + X(∗)B(∗) − CYC(∗) are quaternion matrix expressions, where A is persymmetric or perskew-symmetric. We in this paper derive the minimal rank formula of p(XY) with respect to pair of matrices X and Y = Y(∗), and the minimal rank formula of q(XY) with respect to pair of matrices X and Y = −Y(∗). As applications, we establish some necessary and sufficient conditions for the existence of the general (persymmetric or perskew-symmetric) solutions to some well-known linear quaternion matrix equations. The expressions are also given for the corresponding general solutions of the matrix equations when the solvability conditions are satisfied. At the same time, some useful consequences are also developed.  相似文献   

4.
A Hilbert space operator A ∈ B(H) is said to be p-quasi-hyponormal for some 0 < p ? 1, A ∈ p − QH, if A(∣A2p − ∣A2p)A ? 0. If H is infinite dimensional, then operators A ∈ p − QH are not supercyclic. Restricting ourselves to those A ∈ p − QH for which A−1(0) ⊆ A∗-1(0), A ∈ p − QH, a necessary and sufficient condition for the adjoint of a pure p − QH operator to be supercyclic is proved. Operators in p − QH satisfy Bishop’s property (β). Each A ∈ p − QH has the finite ascent property and the quasi-nilpotent part H0(A − λI) of A equals (A − λI)-1(0) for all complex numbers λ; hence f(A) satisfies Weyl’s theorem, and f(A) satisfies a-Weyl’s theorem, for all non-constant functions f which are analytic on a neighborhood of σ(A). It is proved that a Putnam-Fuglede type commutativity theorem holds for operators in p − QH.  相似文献   

5.
Given an observable pair of matrices (CA) we consider the manifold of (CA)-invariant subspaces having a fixed Brunovsky-Kronecker structure. Using Arnold techniques we obtain the explicit form of a miniversal deformation of a marked (CA)-invariant subspace with respect to the usual equivalence relation. As an application, we obtain the dimension of the orbit and we characterize the structurally stable subspaces (those with open orbit).  相似文献   

6.
Two perturbation estimates for maximal positive definite solutions of equations X + A*X−1A = Q and X − A*X−1A = Q are considered. These estimates are proved in [Hasanov et al., Improved perturbation Estimates for the Matrix Equations X ± A*X−1A = Q, Linear Algebra Appl. 379 (2004) 113-135]. We derive new perturbation estimates under weaker restrictions on coefficient matrices of the equations. The theoretical results are illustrated by numerical examples.  相似文献   

7.
Let Mn be the space of all n × n complex matrices, and let Γn be the subset of Mn consisting of all n × n k-potent matrices. We denote by Ψn the set of all maps on Mn satisfying A − λB ∈ Γn if and only if ?(A) − λ?(B) ∈ Γn for every A,B ∈ Mn and λ ∈ C. It was shown that ? ∈ Ψn if and only if there exist an invertible matrix P ∈ Mn and c ∈ C with ck−1 = 1 such that either ?(A) = cPAP−1 for every A ∈ Mn, or ?(A) = cPATP−1 for every A ∈ Mn.  相似文献   

8.
Let R ∈ Cn×n be a nontrivial involution, i.e., R2 = I and R ≠ ±I. A matrix A ∈ Cn×n is called R-skew symmetric if RAR = −A. The least-squares solutions of the matrix inverse problem for R-skew symmetric matrices with R∗ = R are firstly derived, then the solvability conditions and the solutions of the matrix inverse problem for R-skew symmetric matrices with R∗ = R are given. The solutions of the corresponding optimal approximation problem with R∗ = R for R-skew symmetric matrices are also derived. At last an algorithm for the optimal approximation problem is given. It can be seen that we extend our previous results [G.X. Huang, F. Yin, Matrix inverse problem and its optimal approximation problem for R-symmetric matrices, Appl. Math. Comput. 189 (2007) 482-489] and the results proposed by Zhou et al. [F.Z. Zhou, L. Zhang, X.Y. Hu, Least-square solutions for inverse problem of centrosymmetric matrices, Comput. Math. Appl. 45 (2003) 1581-1589].  相似文献   

9.
We study determinant inequalities for certain Toeplitz-like matrices over C. For fixed n and N ? 1, let Q be the n × (n + N − 1) zero-one Toeplitz matrix with Qij = 1 for 0 ? j − i ? N − 1 and Qij = 0 otherwise. We prove that det(QQ) is the minimum of det(RR) over all complex matrices R with the same dimensions as Q satisfying ∣Rij∣ ? 1 whenever Qij = 1 and Rij = 0 otherwise. Although R has a Toeplitz-like band structure, it is not required to be actually Toeplitz. Our proof involves Alexandrov’s inequality for polarized determinants and its generalizations. This problem is motivated by Littlewood’s conjecture on the minimum 1-norm of N-term exponential sums on the unit circle. We also discuss polarized Bazin-Reiss-Picquet identities, some connections with k-tree enumeration, and analogous conjectured inequalities for the elementary symmetric functions of QQ.  相似文献   

10.
The variable-coefficient Korteweg-de Vries (KdV) equation with additional terms contributed from the inhomogeneity in the axial direction and the strong transverse confinement of the condense was presented to describe the dynamics of nonlinear excitations in trapped quasi-one-dimensional Bose-Einstein condensates with repulsive atom-atom interactions. To understand the role of nonlinear dispersion in this variable-coefficient model, we introduce and study a new variable-coefficient KdV with nonlinear dispersion (called vc-K(mn) equation). With the aid of symbolic computation, we obtain its compacton-like solutions and solitary pattern-like solutions. Moreover, we also present some conservation laws for both vc-K+(nn) equation and vc-K(nn) equation.  相似文献   

11.
The extremal ranks of matrix expression of A − BXC with respect to XH = X have been discussed by applying the quotient singular value decomposition Q-SVD and some rank equalities of matrices in this paper.  相似文献   

12.
In this paper, the nonlinear matrix equation X + AXqA = Q (q > 0) is investigated. Some necessary and sufficient conditions for existence of Hermitian positive definite solutions of the nonlinear matrix equations are derived. An effective iterative method to obtain the positive definite solution is presented. Some numerical results are given to illustrate the effectiveness of the iterative methods.  相似文献   

13.
Let b = b(A) be the Boolean rank of an n × n primitive Boolean matrix A and exp(A) be the exponent of A. Then exp(A) ? (b − 1)2 + 2, and the matrices for which equality occurs have been determined in [D.A. Gregory, S.J. Kirkland, N.J. Pullman, A bound on the exponent of a primitive matrix using Boolean rank, Linear Algebra Appl. 217 (1995) 101-116]. In this paper, we show that for each 3 ? b ? n − 1, there are n × n primitive Boolean matrices A with b(A) = b such that exp(A) = (b − 1)2 + 1, and we explicitly describe all such matrices.  相似文献   

14.
For a set A of nonnegative integers the representation functions R2(A,n), R3(A,n) are defined as the number of solutions of the equation n=a+a,a,aA with a<a, a?a, respectively. Let D(0)=0 and let D(a) denote the number of ones in the binary representation of a. Let A0 be the set of all nonnegative integers a with even D(a) and A1 be the set of all nonnegative integers a with odd D(a). In this paper we show that (a) if R2(A,n)=R2(N?A,n) for all n?2N−1, then R2(A,n)=R2(N?A,n)?1 for all n?12N2−10N−2 except for A=A0 or A=A1; (b) if R3(A,n)=R3(N?A,n) for all n?2N−1, then R3(A,n)=R3(N?A,n)?1 for all n?12N2+2N. Several problems are posed in this paper.  相似文献   

15.
Let T and A be two nonnegative regular summability matrices and W(T,p)∩l and cA(b) denote the spaces of all bounded strongly T-summable sequences with index p>0, and bounded summability domain of A, respectively. In this paper we show, among other things, that is a multiplier from W(T,p)∩l into cA(b) if and only if any subset K of positive integers that has T-density zero implies that K has A-density zero. These results are used to characterize the A-statistical comparisons for both bounded as well as arbitrary sequences. Using the concept of A-statistical Tauberian rate, we also show that is not a multiplier from W(T,p)∩l into cA(b) that leads to a Steinhaus type result.  相似文献   

16.
Let A be a standard operator algebra acting on a (real or complex) normed space E. For two n-tuples A = (A1, … , An) and B = (B1, … , Bn) of elements in A, we define the elementary operator RA,B on A by the relation for all X in A. For a single operator AA, we define the two particular elementary operators LA and RA on A by LA(X) = AX and RA(X) = XA, for every X in A. We denote by d(RA,B) the supremum of the norm of RA,B(X) over all unit rank one operators on E. In this note, we shall characterize: (i) the supremun d(RA,B), (ii) the relation , (iii) the relation d(LA − RB) = ∥A∥ + ∥B∥, (iv) the relation d(LARB − LBRA) = 2∥A∥ + ∥B∥. Moreover, we shall show the lower estimate d(LA − RB) ? max{supλV(B)A − λI∥, supλV(A)B − λI∥} (where V(X) is the algebraic numerical range of X in A).  相似文献   

17.
We consider the nonlinear dispersive K(m,n) equation with the generalized evolution term and derive analytical expressions for some conserved quantities. By using a solitary wave ansatz in the form of sechp function, we obtain exact bright soliton solutions for (2 + 1)-dimensional and (3 + 1)-dimensional K(m,n) equations with the generalized evolution terms. The results are then generalized to multi-dimensional K(m,n) equations in the presence of the generalized evolution term. An extended form of the K(m,n) equation with perturbation term is investigated. Exact bright soliton solution for the proposed K(m,n) equation having higher-order nonlinear term is determined. The physical parameters in the soliton solutions are obtained as function of the dependent model coefficients.  相似文献   

18.
In this paper we will give necessary and sufficient conditions under which a map is a contraction on a certain subset of a normed linear space. These conditions are already well known for maps on intervals in R. Using the conditions and Banach’s fixed point theorem we can prove a fixed point theorem for operators on a normed linear space. The fixed point theorem will be applied to the matrix equation X = In + Af(X)A, where f is a map on the set of positive definite matrices induced by a real valued map on (0, ∞). This will give conditions on A and f under which the equation has a unique solution in a certain set. We will consider two examples of f in detail. In one example the application of the fixed point theorem is the first step in proving that the equation has a unique positive definite solution under the conditions on A.  相似文献   

19.
We consider a free boundary problem modeling tumor growth in fluid-like tissue. The model equations include a diffusion equation for the nutrient concentration, and the Stokes equation with a source which represents the proliferation of tumor cells. The proliferation rate μ and the cell-to-cell adhesiveness γ which keeps the tumor intact are two parameters which characterize the “aggressiveness” of the tumor. For any positive radius R there exists a unique radially symmetric stationary solution with radius r=R. For a sequence μ/γ=Mn(R) there exist symmetry-breaking bifurcation branches of solutions with free boundary r=R+εYn,0(θ)+O(ε2) (n even ?2) for small |ε|, where Yn,0 is the spherical harmonic of mode (n,0). Furthermore, the smallest Mn(R), say Mn(R), is such that n=n(R)→∞ as R→∞. In this paper we prove that the radially symmetric stationary solution with R=RS is linearly stable if μ/γ<N(RS,γ) and linearly unstable if μ/γ>N(RS,γ), where N(RS,γ)?Mn(RS), and we prove that strict inequality holds if γ is small or if γ is large. The biological implications of these results are discussed at the end of the paper.  相似文献   

20.
Let n×n complex matrices R and S be nontrivial generalized reflection matrices, i.e., R=R=R−1≠±In, S=S=S−1≠±In. A complex matrix A with order n is said to be a generalized reflexive (or anti-reflexive ) matrix, if RAS=A (or RAS=−A). In this paper, the solvability conditions of the left and right inverse eigenvalue problems for generalized reflexive and anti-reflexive matrices are derived, and the general solutions are also given. In addition, the associated approximation solutions in the solution sets of the above problems are provided. The results in present paper extend some recent conclusions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号