首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In fatigue, both the crack-propagation rates and the cumulative acoustic-emission activity are known to be related to the applied stress-intensity range. By considering the energy balance during crack propagation and the relation of strain energy release to the acoustic-emission characteristics, a formal relation between acoustic emission amplitudes and initial fatigue-crack-propagation rates has been derived. Continuous monitoring of acoustic emission during low cycle (tension-tension) fatigue tests has been conducted on aluminum 2024-T3 and 7075-T6 alloys, until fracture. Initial crack sizes and orientations in the fatigue specimens were randomly distributed. Every few hundred cycles, the acoustic signal having the highest peak amplitude was recorded as the extreme acoustic-emission event for the elapsed period. The extreme peak amplitudes, related to extreme crack-propagation rates, were shown, by an order statistics treatment, to be extremally distributed. Statistical, nondeterministic, approach to fatigue considers that only extreme crack-propagation rates are vital to fatigue lives. Knowledge of the distribution function of propagation rates is therefore essential in design for fatigue. Such knowledge can now be obtained in a nondestructive manner, during service in real time, by analyzing the distribution of amplitudes of acoustic-emission signals emitted during cyclic stressing. The statistical treatment enables the prediction of the number of cycles left until failure. Predictions performeda posteriori, based on results gained early in each fatigue test, were in good agreement with actual fatigue lives. The amplitude distribution analysis of the acoustic signals emitted during fatigue tests has been proven to be a feasible nondestructive method for predicting fatigue life.  相似文献   

2.
The fatigue crack initiation and propagation in the pure aluminum single crystals with different orientations are investigated. Acoustic Emission (AE) technique is used to monitor the fatigue crack initiation and propagation data. The results show that the acoustic emission technique could be used for detecting fatigue crack initiation and propagation. The total counts of AE are plotted as a function of the number of fatigue cycles, and change in slope of the curve corresponded to the initiation of the fatigue crack. The fatigue crack initiation and propagation are related to the specimen crystalline orientation. Specifically, they depend on the ratio K of the Schmid factor of the secondary slip system, to that of the primary one. The greater the ratio K, the easier the fatigue crack initiates and the faster the fatigue crack propagates. When the ratio K is equal or close to one, the fatigue crack grows either along a cleavage plane which intersects both the primary plane and the secondary one or along the primary slip plane and the secondary one. Growth along alternating planes can also occur giving rise to a zigzag path. When the ratio K is much less than one, the fatigue crack grows along the primary slip plane only. The results are explained with a model for the faceted mode of fatigue crack growth.  相似文献   

3.
Additive manufacturing (AM) is a novel and innovative production technology that can produce complex and lightweight engineering products. In AM components, as in all engineering materials, fatigue is considered as one of the principle causes of unexpected failure. In order to detect, localise and characterise cracks in various material components and metals, acoustic emission (AE) is used as a non-destructive monitoring technique. One of the main advantages of AE is that it can be also used for dynamic damage characterisation and specifically for crack propagation monitoring. In this research, we use AE to monitor the fatigue crack growth behaviour of Ti6Al4V components under four-point bending. The samples were produced by means of AM as well as conventional material. Notched and unnotched specimens were investigated with respect to the crack severity and crack detection using AE. The main AE signal parameters –such as cumulative events, hits, duration, average frequency and rise time– were evaluated and indicate sensitivity to damage propagation in order to lead to a warning against the final fracture occurrence. This is the first time that AE is applied in AM components under fatigue.  相似文献   

4.
Fine grain alloys possess excellent properties entailing high strength and toughness. Fine brass H62 is made by re-crystallization with grain size ranging from 5 to 10 μm. Fatigue initiation life is investigated from specimens tested on Instron 1341 machine a frequency of 30 Hz. Furthermore fatigue crack initiation life of this fine brass H62 is predicted by the energetic approach. It is found that: (1) the finer the grain size, the longer the fatigue life, which is due to its higher toughness; (2) intergranular cracking is the main mechanism of fatigue failure. Concave pits were found in the zone of fatigue crack propagation; and (3) the energetic approach gave acceptable fatigue crack initiation life estimation.  相似文献   

5.
Reliability calls for a better understanding of the failure of ferroelectric ceramics. The fracture and fatigue of ferroelectric ceramics under an electric field or a combined electric and mechanical loading are investigated. The small-scale domain-switching model is modified to analyze failure due to fracture and fatigue. Effects of anisotropy and electromechanical load coupling are taken into account. Analytical expressions are obtained for domain-switching regions near the crack tip such that of 90° domain switching can be distinguished from 180° domain switching in addition to different initial poling directions. The crack tip stress intensity variation of ferroelectric ceramics due to the domain switching is analyzed. A positive electric field tends to enhance the propagation of an insulating crack perpendicular to the poling direction, while a negative field impedes it. Fatigue crack growth under various coupling loads and effects of the stress field and electric field on near field stress intensity variation are analyzed. Predicted crack growth versus cyclic electric field agrees well with experiment.  相似文献   

6.
The influence of repeated impact loading on fatigue fracture of carbon spring En-42J steel is studied. A highly localized plastic deformation is observed at the time of impact. The circular disc specimen is failed by impact fatigue resulting in small chips and ordinary fatigue failure by slow crack growth. The crack growth behavior depends on specimen geometry, load spectra and material type. The resultant of applied and residual stress was highest at the edge of the circular disc where the crack initiated. The fractured surface showed typical cleavage facets and dimples indicating acicular martensite. A model is developed to explain fatigue crack initiation and propagation behavior under impact loading. Stress calculations are made to determine catastrophic failure. Crack initiation occupied the major part of impact fatigue life while crack growth was fast and led quickly to sudden fracture.  相似文献   

7.
王大刚  张俊 《摩擦学学报》2021,41(5):710-722
微动疲劳是矿井提升钢丝绳主要失效形式之一,在钢丝微动疲劳过程中,微动磨损严重影响钢丝微动疲劳裂纹扩展特性,进而制约钢丝微动疲劳断裂机制,故开展考虑微动磨损的钢丝微动疲劳裂纹扩展寿命预测研究至关重要. 运用自制钢丝微动疲劳试验机开展钢丝微动疲劳试验和拉伸断裂试验,通过高速度数码显微系统揭示微动疲劳过程中钢丝微动磨损演化、裂纹萌生和扩展及断裂特性,基于摩擦学和断裂力学理论,运用有限元法、循环迭代法和虚拟裂纹闭合技术建立了考虑微动磨损的钢丝微动疲劳裂纹扩展寿命预测模型,并进行试验验证. 结果表明:采用微动疲劳过程稳定阶段磨损系数预测钢丝微动磨损演化可保证预测正确性,微动疲劳过程中钢丝主要为I型裂纹扩展模式,考虑微动磨损的钢丝微动疲劳裂纹扩展寿命预测值和试验值吻合较好,验证了预测模型正确性.   相似文献   

8.
The problem of propagation of a longitudinal shear crack in a medium with a random field of internal stresses is considered and solved with the use of the theory of quasi-brittle failure. Local criterion of crack propagation under cyclic loading is derived, and its application as a model of fatigue crack propagation is investigated.Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, Vol. 11, No. 3, pp. 117–119, May–June, 1970.  相似文献   

9.
通过试验发现交变载荷下含两孔洞的铝合金长条,由于两孔洞的方位不同,至少有五种疲劳裂纹引起的破坏型式.在五种不同的破坏情况下,疲劳裂纹初始寿命和疲劳裂纹扩展寿命均不同,必须分阶段评估,这也直接影响到整体疲劳寿命的预计;此时常规的、经典的疲劳裂纹扩展理论难以直接应用.  相似文献   

10.
This work is concerned with the assessment of propagation of multiple fatigue cracks in three-dimensions. Computational modelling of fatigue crack propagation is made together with detection and monitoring of the crack shape development. The boundary element method (BEM) is used for automating the modelling of crack propagation in linear elastic as well as elastic–plastic regimes. Strain at several positions on the specimen surface near the crack mouth is measured to monitor crack initiation, shape development and closure levels. Examples are provided to validate the model by comparing the experimental results with those obtained by numerical predictions.  相似文献   

11.
The strain energy density factor S was first proposed by Sih for the prediction of the critical of the load and failure direction under monotonic, mixed mode loading condition. It seems a natural extension to apply the same concept to fatigue crack propagation. However, a close examination of the existing theory indicates that the Strain Energy Density Factor cannot logically account for the phenomena of the R-ratio effect and crack arrest. Thus, modification is necessary before the concept can be applied successfully for the prediction of mixed mode fatigue crack propagation.Based on the concept of hysteresis energy dissipation, an effective strain energy density factor range, ΔSp,eff, is proposed for the correlation of fatigue crack growth data. ΔSp,eff is consistent with the concept of crack closure. Experimental investigation indicates that it could predict the crack growth rates and trajectories.  相似文献   

12.
疲劳裂纹扩展前应力集中区域变形场的测试对材料疲劳性能的研究起到至关重要的作用.但由于疲劳试验为动态的过程,在动态下测量比在静态下要复杂得多,这样就给变形场的测量带来了困难.通过调节频闪光源的频率使其与疲劳试验机的频率相同,可把此动态过程转换为准静态过程,采集不同循环周期内的相同时刻的灰度图像,并运用数字图像频域相关分析...  相似文献   

13.
裂纹闭合效应通常是导致I 型裂纹扩展在高载作用下发生迟滞效应的主要因素之一.本文采用汽车薄板QSTE340TM 材料,针对不同应力比,高载比条件下疲劳裂纹扩展行为进行了实验研究.论文通过断面分析,针对各参数对裂纹闭合效应的具体影响进行了分析讨论,认为裂纹作用区域随裂纹扩展而动态变化,从而提出了一种对有效应力强度因子幅的修正方法.通过在原有模型中引入幂函数形式的动态变量α,表征裂纹闭合效应的作用比例随裂纹长度的动态变化,取得了较好的效果.  相似文献   

14.
To better understand the failure characteristics of lead titanate zirconate (PZT) piezoelectric ceramics, in-situ measurements of displacement and crack growth rates were conducted during high cycle fatigue testing, e.g., 5 kHz. A commercial PZT ceramic (used in a buzzer) was employed as the specimen. To examine the failure characteristics, two newly proposed systems were used: (i) a high speed camera system and (ii) a condenser microphone system. The former system consisted of two high speed cameras with an analytical system, which could measure the displacement of the PZT ceramic during the cyclic loading. The maximum displacement value of the ceramic was found to be approximately 20 μm at 0.5 kHz. The three-dimensional shape of the PZT ceramic during cyclic loading could be clearly observed. With the latter system, the displacement intensity arising from the ceramic vibration was detected continuously. It was found that the crack growth rate was not correlated with the fatigue frequency due to the resonance caused by the ceramic oscillation. There is a linear relationship between the crack growth rate and sonar intensity. On the basis of the crack growth behavior, the failure characteristics of the PZT ceramic could be clearly determined.  相似文献   

15.
Intrinsically, fatigue failure problem is a typical multiscale problem because a fatigue failure process deals with the fatigue crack growth from microscale to macroscale that passes two different scales. Both the microscopic and macroscopic effects in geometry and material property would affect the fatigue behaviors of structural components. Classical continuum mechanics has inability to treat such a multiscale problem since it excludes the scale effect from the beginning by introducing the continuity and homogeneity assumptions which blot out the discontinuity and inhomogeneity of materials at the microscopic scale. The main obstacle here is the link between the microscopic and macroscopic scale. It has to divide a continuous fatigue process into two parts which are analyzed respectively by different approaches. The first is so called as the fatigue crack initiation period and the second as the fatigue crack propagation period. Now the problem can be solved by application of the mesoscopic fracture mechanics theories developed in the recent years which focus on the link between different scales such as nano-, micro- and macro-scale.On the physical background of the problem, a restraining stress zone that can describe the material damaging process from micro to macro is then introduced and a macro/micro dual scale edge crack model is thus established. The expression of the macro/micro dual scale strain energy density factor is obtained which serves as a governing quantity for the fatigue crack growth. A multiscaling formulation for the fatigue crack growth is systematically developed. This is a main contribution to the fundamental theories for fatigue problem in this work. There prevail three basic parameters μ, σ and d in the proposed approach. They can take both the microscopic and macroscopic factors in geometry and material property into account. Note that μ, σ and d stand respectively for the ratio of microscopic to macroscopic shear modulus, the ratio of restraining stress to applied stress and the ratio of microvoid size ahead of crack tip to the characteristic length of material microstructure.To illustrate the proposed multiscale approach, Hangzhou Jiangdong Bridge is selected to perform the numerical computations. The bridge locates at Hangzhou, the capital of Zhejiang Province of China. It is a self-anchored suspension bridge on the Qiantang River. The cables are made of 109 parallel steel wires in the diameter of 7 mm. Cable forces are calculated by finite element method in the service period with and without traffic load. Two parameters α and β are introduced to account for the additional tightening and loosening effects of cables in two different ways. The fatigue crack growth rate coefficient C0 is determined from the fatigue experimental result. It can be concluded from numerical results that the size of initial microscopic defects is a dominant factor for the fatigue life of steel wires. In general, the tightening effect of cables would decrease the fatigue life while the loosening effect would impede the fatigue crack growth. However, the result can be reversed in some particular conditions. Moreover, the different evolution modes of three basic parameters μ, σ and d actually have the different influences on the fatigue crack growth behavior of steel wires. Finally the methodology developed in this work can apply to all cracking-induced failure problems of polycrystal materials, not only fatigue, but also creep rupture and cracking under both static and dynamic load and so on.  相似文献   

16.
Few studies have been made on the fracture mechanics of polymers, their resistance to plastic failure, fatique rupture, and the adverse effects of environmental conditions, in contrast to the numerous studies conducted on metallic materials. Since fatigue is characterized by very local and cyclic fractures, in the present study a real-time fine-grid method was applied to study the fatigue rupture of polymers: to examine changes in local strain at the root of the notch during the process of crack initiation, the local strain at the tip of the crack during crack propagation and the relation between the plastic zone formed in front of the crack tip and the rate of crack propagation. As a result, strong correlation between three proposed parameters of the local crack-tip strain, the crack initiation and the propagation rate was obtained, and the mechanism of low-cycle fatigue rupture of polymers could be discussed.Paper was presented at the 1988 SEM Spring Conference on Experimental Mechanics held in Portland, OR on June 5–10.  相似文献   

17.
传统的研究含缺口构件的疲劳的方法是将疲劳启裂和疲劳裂纹扩展两个过程完全独立起来,用不同的方法来模拟,相互间并没有定量的关系。本文是基于最新发展的多轴疲劳损伤理论,建立了一种适用于各种载荷条件下的疲劳启裂和裂纹扩展的普适方法。根据从弹塑性分析中得到的应力应变,确定疲劳损伤模型,建立能够预测疲劳启裂、裂纹扩展速率和扩展方向的新方法。整个模拟可以分为两步:弹-塑性应力分析得到材料的应力应变分布;再运用一个通用的疲劳准则预测疲劳裂纹启裂和裂纹扩展。通过对1070号钢含缺口试件的疲劳全寿命预测,得到了与实验非常吻合的模拟结果。  相似文献   

18.
沥青混合料疲劳过程的损伤力学分析   总被引:11,自引:1,他引:10  
采用损伤力学方法研究沥青混合料的疲劳失效问题。针对悬壁梁弯曲疲劳试件,推导出疲劳过程中应力场、损伤场和疲劳裂纹形成寿命的工程封闭公式。根据沥青混合料特点,提出一种模拟疲劳裂纹扩展的特征单元失效模式,从而将疲劳裂纹形成与扩展两个阶段统一用损伤力学理论进行描述和分析。本文对沥青混合料试件的疲劳裂纹形成寿命与扩展寿命分段进行了预测,还对疲劳过程中刚度衰减及位移幅值的演化过程进行了数值模拟计算。理论预期与实验结果吻合良好。  相似文献   

19.
The fatigue failure of a thin infinite center-cracked plate under completely reversed uniaxial loading is considered. A two-stage fatigue crack model including the incubation and crack propagation stages is constructed. The stress distribution in the vicinity of the crack tip is described using the concept of a conventional elastic crack. The crack-tip plastic zone is simulated by a Dugdale thin plastic zone, and the condition for the movement of the failure front is given by criteria of damage mechanics. It is shown that the fatigue crack growth rate in perfectly plastic materials with a plastic zone of constant length is a power-law function of the stress intensity factor range. This relationship is quadratic when the length of the plastic zone is not constant Published in Prikladnaya Mekhanika, Vol. 41, No. 12, pp. 116–127, December 2005.  相似文献   

20.
Elastic–plastic solutions of an anti-plane crack in an infinite body are used in conjunction with a continuum damage model to describe the conditions necessary for the onset of crack instability, fatigue crack propagation due to cyclic loading, and rates of crack growth due to time dependent events. A power law relates the stress to the strain of the material. The damage, which invokes nucleation, growth and coalescence of microvoids due to elevated strain, is confined to the plastic zone surrounding the crack tip. For applied loading below the yield stress, the small-scale and large-scale yielding solutions are used to determine the influence of strain hardening on crack instability and failure. Crack growth due to cyclic loading and time-dependent deformations are studied using the small-scale yielding solution of the deformation theory of plasticity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号