首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Operation during the charge and discharge cycles of molten-salt thermoclines used for solar thermal energy storage depends strongly on the environmental boundary conditions to which the tanks are exposed. A comprehensive model which accounts for thermal transport in the molten-salt heat transfer fluid and the filler material in the tank is developed for exploring the effects of boundary conditions on thermocline performance. Heat loss from the tank under non-adiabatic boundary conditions is found to distort the temperature and salt flow distributions relative to the uniform conditions found in adiabatic thermoclines; as a result, the outflow temperature drops more rapidly in the former case. Such effects of non-adiabatic boundaries become insignificant at large salt-flow Reynolds numbers. As the Reynolds number increases beyond 250, the discharge efficiency of non-adiabatic thermoclines approaches that of the adiabatic counterparts. In the case of significant heat loss at the walls, the discharge efficiency of thermoclines increases with increasing Reynolds number, a trend that is opposite to that in adiabatic thermoclines.  相似文献   

2.
Thermal ratcheting is a critical phenomenon associated with the cyclic operation of dual-medium thermocline tanks in solar energy applications. Although thermal ratcheting poses a serious impediment to thermocline operation, this failure mode in dual-medium thermocline tanks is not yet well understood. To study the potential for the occurrence of ratcheting, a comprehensive model of a thermocline tank that includes both the heterogeneous filler region as well as the composite tank wall is formulated. The filler region consists of a rock bed with interstitial molten salt, while the tank wall is composed of a steel shell with two layers of insulation (firebrick and ceramic). The model accounts separately for the rock and molten-salt regions in view of their different thermal properties. Various heat loss conditions are applied at the external tank surface to evaluate the effect of energy losses to the surroundings. Hoop stresses, which are governed by the magnitude of temperature fluctuations, are determined through both a detailed finite-element analysis and simple strain relations. The two methods are found to yield almost identical results. Temperature fluctuations are damped by heat losses to the surroundings, leading to a reduction in hoop stresses with increased heat losses. Failure is prevented when the peak hoop stress is less than the material yield strength of the steel shell. To avoid ratcheting without incurring excessive energy loss, insulation between the steel shell and the filler region should be maximized.  相似文献   

3.
Considering the high-temperature thermal utilization of solar energy as the research background in this paper and focussing on the heat storage process, a kind of hybrid thermocline heat storage method in multi-scale structure and relevant experimental systems are designed by using the mixed molten nitrate salt as the heat storage medium and two representative porous materials, i.e. zirconium ball and silicon carbide (SiC) foam, as the heat storage fillers. The fluid flow and heat storage performance of molten salt in multi-scale structure are experimentally investigated. The results show that the theoretical heat storage efficiencies amongst the three experimental heat storage manners are less than 80% because of the existence of thermocline layers. Comparing to the single-phase molten salt heat storage, the two hybrid thermocline heat storage manners with porous fillers lead to a certain decrease in the effective heat storage capacity. The presence of porous fillers can also help to maintain the molten salt fluid as ideal gravity flow or piston flow and partially replace expensive molten salt. Therefore, it requires a combination of heat storage capacity and economical consideration for optimization design when similar spherical particles or foam ceramics are employed as the porous fillers.  相似文献   

4.
Composite materials with alkali carbonate and magnesia have been examined for high-temperature thermal storage in solar tubular reformers. The concept of a double-walled reactor tube involves packing a molten-salt/ceramic composite material into the annular region between internal catalyst tube and exterior solar-absorber wall. In this paper, the shape and interior structure of the reactor tube are newly designed for use in solar cavity-type reformers using straight reactor tubes. Na2CO3, K2CO3, and Li2CO3 composite materials with magnesia were tested as thermal storage media for CO2 reforming of methane during cooling mode of the reactor tube at a laboratory scale. The efficiency of Na2CO3/MgO composite with various MgO contents was also estimated. Composite materials of Na2CO3 80–90 wt% and MgO 20–10 wt% were successfully delayed the cooling of the catalyst bed and sustained methane conversion at >90%. A solar cavity-type reformer consisting of multiple straight reactor tubes is expected to enable stable operation of the solar reforming process under fluctuating solar insolation during cloud passage.  相似文献   

5.
Molten salts have better thermal properties than synthetic mineral oil, and hence they can be directly used as heat transfer fluids in solar power plants, but in practice their direct applications as heat transfer fluids are constrained due to their high freezing temperature points. In this paper, a class of ternary nitrate salt mixtures consisting of 50-80 wt% KNO3, 0-25 wt% LiNO3 and 10-45 wt% Ca(NO3)2 were processed and tested. Experimental results indicated that some mixtures within this range exhibited excellent thermal properties, such as a low melting point (<100 °C), robust reliability, high-temperature stability (upto 500 °C) and a low viscosity (e.g.,<5 cP at 190 °C). Apart from these desirable thermo-physical properties, the manufacturing cost of these novel inorganic salts HTFs (Heat Transfer Fluids) is considerably lower than those of the existing commercial heat transfer fluids (HTFs).  相似文献   

6.
A theoretical calculation of the degradation of heat in stratified thermocline storage has been carried out based on a conduction model. Since this neglects mixing, eddy currents and other degradation mechanisms, it provides an upper limit to the performance of a stratified thermocline storage tank. The calculation can be carried out for any selection of dimensions, temperatures, and choice of insulation. The results indicate that heat conduction through the insulation to the ambient can be a larger loss mechanism than conduction across the thermocline, except in large diameter tanks with very heavy insulation. With a properly designed tank (length/diameter > 10, diameter > 1.5 ft, insulation resistance > 20 hr ft2 °F/B.t.u.) efficient storage of heat through a daily cycle should be routinely simple based on conduction. Experiments were carried out in static and dynamic modes. In the static experiments, a fixed thermocline was established, and temperatures were monitored at spatial intervals above and below the thermocline. Some mixing occurred during formation of the thermocline, which caused an initial broadening not present in the calculations. Aside from this, it was found that the spreading of the thermocline was only slightly faster than predicted by conduction theory. If a thinner wall tank had been available, agreement between experiment and theory probably would have been closer. Dynamic experiments were conducted with a moving thermocline (both upward and downward). The results indicate preservation of the initial thermocline was excellent at linear flow rates below about 0.2 ft/min. It is believed that stratified thermocline storage has been shown to be technically viable.  相似文献   

7.
A system is being designed, using solar energy in combination with Aquifer Thermal Energy Storage (ATES), that will conserve a major part of the oil and electricity used for heating or cooling the Cukurova University, Balcali Hospital in Adana, Turkey. The general objective of the system is to provide heating and cooling to the hospital by storing solar heat underground in summer and cold in winter. As the main source of cold energy, ventilation air at the hospital and surface water from the nearby Seyhan Lake will be used.  相似文献   

8.
9.
In this paper, the operating temperature ranges of various solar thermal energy technologies are analyzed, with respect to their compatibility with solar hydrogen production via thermochemical cycles. It is found that the maximum temperature of 530 °C required by the oxygen production step in the Cu-Cl cycle can be supplied by current solar thermal technologies. The heat requirements are examined for the Cu-Cl cycle and it is found that the heat source must be sufficiently high and above the maximum temperature requirement of the Cu-Cl cycle, in order to match the heat requirements of the cycle. The quantity of molten salt and solar plant dimensions for capturing and storing solar heat for an industrial hydrogen production scale are also estimated for 24 h operation per day. The flow characteristics and heat losses of molten salt transport in pipelines are studied while considering the influences of pipeline diameter, heat load and weather conditions. The heat loss from a solar salt storage tank is also calculated based on various tank diameters and heights. The intermediate product of molten salt produced in the oxygen production step gives the Cu-Cl cycle a significant advantage of linkage with current high temperature solar thermal technologies. This allows flexibility for integration of the Cu-Cl cycle and solar thermal plant. Using a thermal network analysis of the Cu-Cl cycle, the layout options for the integration of a Cu-Cl cycle with various solar thermal technologies are presented and discussed in this paper.  相似文献   

10.
This paper presents a brief review of the available latent heat storage systems for solar energy utilization. A new concept of latent heat storage of solar energy via the refrigerant-absorbent mass storage in absorption cycle heat pump systems used for solar space heating/cooling has been proposed and assessed thermodynamically. A computer modelling and numerical simulation study shows that the concept of refrigerant storage is fundamentally sound, technically feasible and yields the following advantages over other storage methods: (i) the storage capacity per unit volume is high as the latent heat of vaporization of the refrigerant is high; (ii) the heat loss from the storage to the surroundings is minimum as the storage temperature is near the ambient; (iii) prolonged energy storage is possible with no degradation in system performance and hence suitable for combined solar heating and airconditioning. The effects of operating parameters on the energy storage concentration and storage efficiency have been studied in detail.  相似文献   

11.
Solar thermal energy storage is important to the daily extended operation and cost reduction of a concentrated solar thermal power plant. To provide industrial engineers with an effective tool for sizing a thermocline heat storage tank, this paper used dimensionless heat transfer governing equations for fluid and solid filler material and studied all scenarios of energy charge and discharge processes. It has been found that what can be provided through the analysis is a series of well-configured general charts bearing curves of energy storage effectiveness against four dimensionless parameters grouped up from the storage tank dimensions, properties of the fluid and filler material, and operational conditions (such as mass flow rate of fluid and energy charge and discharge periods). As the curves in the charts are generalized, they are applicable to general thermocline heat storage systems. Engineers can conveniently look up the charts to design and calibrate the dimensions of thermocline solar thermal storage tanks and operational conditions, without doing complicated modeling and computations. It is of great significance that the generalized charts will serve as tools for thermal energy storage system design and calibration in energy industry.  相似文献   

12.
Results of a study to examine the operating characteristics of a 100 kWh thermal energy storage (TES) system suitable for solar thermo electric applications is described. The system chosen consisted of a pebble bed as the primary storage medium and oil as the heat transfer cum storage medium. The operating temperatures considered were between 230 and 250°C with a 20 deg C swing. A full-size unit consisting of a steel tank of volume 10 m3 with 50 mm pebbles, suitable instrumentation and facility for heating the oil was built. The important operating variables and characteristics of the system studied included the transient behaviour of the bed, namely the thermal wave front characteristics. Results of the theoretical analysis of the transient bed behaviour were compared with the experimental data on the wave front propogation characteristics and the comparisons are discussed. The uniformity of flow distribution is also examined.  相似文献   

13.
This note presents a simple transient model for predicting the thermal performance of some novel solar water heaters which combine both collection and storage of solar energy. These heaters consist of either (i) an insulated rectangular tank whose top surface is blackened and suitably glazed, or (ii) an insulated open shallow tank with black bottom/inner sides and a top glass cover (shallow solar pond). the heaters are adequately covered with an insulation during the night to reduce the heat losses. the proposed model is based on different characteristic equations during sunshine and off-sunshine hours. It is seen that the model predicts the water temperature in close agreement with the experimental observations and earlier theoretical investigations.  相似文献   

14.
A new method for the calculation of a stratification efficiency of thermal energy storages based on the second law of thermodynamics is presented. The biasing influence of heat losses is studied theoretically and experimentally. Theoretically, it does not make a difference if the stratification efficiency is calculated based on entropy balances or based on exergy balances. In practice, however, exergy balances are less affected by measurement uncertainties, whereas entropy balances can not be recommended if measurement uncertainties are not corrected in a way that the energy balance of the storage process is in agreement with the first law of thermodynamics. A comparison of the stratification efficiencies obtained from experimental results of charging, standby, and discharging processes gives meaningful insights into the different mixing behaviors of a storage tank that is charged and discharged directly, and a tank-in-tank system whose outer tank is charged and the inner tank is discharged thereafter. The new method has a great potential for the comparison of the stratification efficiencies of thermal energy storages and storage components such as stratifying devices.  相似文献   

15.
In the current study, a solar tower–based energy system integrated with a thermal energy storage option is offered to supply both the electricity and freshwater through distillation and reverse osmosis technologies. A high‐temperature thermal energy storage subsystem using molten salt is considered for the effective and efficient operation of the integrated system. The molten salt is heated up to 565°C through passing the solar tower. The thermal energy storage tanks are designed to store heat up to 12 hours. The temperature variations in the storage tanks are studied and compared accordingly for evaluation. The effect of operating temperatures on the freshwater production and overall system efficiency is determined. About 24.46 MW electricity is generated in the steam turbine under sunny conditions. Furthermore, the storage subsystem stores heat during sunny hours to utilize later in cloudy hours and night time. The produced power decreases to 20.17 MW in discharging hours due to temperature decrease in the tank. The electricity generated by the system is then used to produce freshwater through the reverse osmosis units and also to supply electricity for the residential use. A total flowrate of 240.02 kg/s freshwater is obtained by distillation and reverse osmosis subsystems.  相似文献   

16.
In the paper, two systems for solar thermal power plants (STPPs) are devised for improving the overall performance of the plant. Each one attempts to reduce losses coming from two respective sources. The systems are simulated and compared to a reference STPP.  相似文献   

17.
Concentrated solar power coupled with thermal energy storage is a promising approach for providing the world with clean, renewable, sustainable and cost-competitive power on a large scale. Thermocline thermal energy storage has been proposed as an efficient and cost-competitive alternative to the traditional two-tank design. The thermocline thickness is directly linked to the efficiency of the storage tank. Sensitivity analysis is thus applied to a model of the thermocline thickness to identify the parameters that influence it the most. Results indicate that the tank height along with the thermophysical properties of the solid filler material influence the tank efficiency the most, with fluid properties and having a secondary effect.  相似文献   

18.
This paper reviews different methods that have been proposed to characterize thermal stratification in energy storages from a theoretical point of view. Specifically, this paper focuses on the methods that can be used to determine the ability of a storage to promote and maintain stratification during charging, storing and discharging, and represent this ability with a single numerical value in terms of a stratification efficiency for a given experiment or under given boundary conditions. Existing methods for calculating stratification efficiencies have been applied to hypothetical storage processes of charging, discharging and storing, and compared with the rate of entropy production caused by mixing calculated for the same experiments. The results depict that only one of the applied methods is in qualitative agreement with the rate of entropy production, however, none of the applied methods is in agreement with the rate of entropy production and also able to distinguish between the entropy production caused by mixing and the entropy changes due to heat losses.  相似文献   

19.
In 2010, CIEMAT (Centro de investigaciones energéticas medioambientales y tecnológicas) signed a turn-key contract to have an experimental plant for thermal storage using molten salts at its PSA (Plataforma Solar de Almeria) facilities. This plant was designed to evaluate components, instrumentation and operation strategies and to give support to the industry in the qualification and evaluation of components.During the design, construction and start-up phases of this plant, many different aspects regarding design, construction and commissioning have been learnt and these will contribute to the improvement of other plants.Among other tips explained in the paper, we recommend the use of venting valves to eliminate the water present in the system after the pressure test or released by the salts during the first melting. The selection of instrumentation with no electronic components near a heat source, thus preventing them from overheating, is also advisable. The heat exchanger design and dimensioning should take into account not only the thermal losses to the atmosphere and through pipes and supports, but any possible reduction in the heat exchange surface that could have detrimental consequences in the thermal performance.Special attention must be paid when dimensioning and installing the EHT and insulation because both components are decisive in the avoidance of plug formation. Its correct installation in valves and supports and the proper positioning of the temperature control sensors, i.e. where no other heat source can distort the readings, are crucial.Recommendations and strategies for the operation and shutdown of this experimental plant are being gathered for a future paper.  相似文献   

20.
Energy balance equations are used to model the solar energy capture (SEC) system and the thermal energy storage (TES) system of a proposed indirect solar cooker. An oil-pebble bed is used as the TES material. Energy and exergy analyses are carried out using two different charging methods to predict the performance of the TES system. The first method charges the TES system at a constant flowrate. In the second method, the flowrate is made variable to maintain a constant charging temperature. A Simulink block model is developed to solve the energy balance equations and to perform energy and exergy analyses. Simulation results using the two methods indicate a greater degree of thermal stratification and energy stored when using constant-temperature charging than when using constant-flowrate charging. There are greater initial energy and exergy rates for the constant-flowrate method when the solar radiation is low. Energy efficiencies using both methods are comparable whilst the constant-temperature method results in greater exergy efficiency at higher levels of the solar radiation. Parametric results showing the effect of each charging method on the energy and exergy efficiencies are also presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号