首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Solid-phase microextraction (SPME) was used to facilitate the measurement of stable carbon isotope compositions (at natural abundance) of six organic compounds representing four compound classes in aqueous solution. Toluene, methylcyclohexane, hexanol, and acetic, propionic, and valeric acids were extracted from aqueous solutions with appropriate SPME phases and thermally desorbed into the split/splitless inlet of an isotope ratio monitoring gas chromatograph/mass spectrometer (irmGC/MS). Hydrophobic compounds (toluene, methylcyclohexane, hexanol) extracted by a nonpolar SPME phase were slightly (≤0.5‰) enriched in (13)C while organic acids extracted with a polar phase were depleted in (13)C to a somewhat greater degree (≤1.5‰) relative to material remaining in the aqueous phase. Isotopic fractionation was not observed to vary systematically as a function of equilibration time or solute concentration. Further, isotope fractionation did not vary consistently with the partition coefficient (K(fw)). However, both salinity and cosolvent effects, which altered the partition coefficients of the solutes, also yielded a reduction in the magnitude of isotopic fractionation (to ≤0.4‰ for the hydrocarbons, ≤0.5‰ for the organic acids). We conclude that fractionations are most likely associated with the interactions of organic compounds with the organic phase coating SPME fibers and are specifically due to mass-dependent energy shifts upon solution of each analyte into the organic phase. In addition, fractionations are also influenced by energy shifts associated with electrostatic forces acting on the analyte in the water phase during the partitioning process. The magnitude of isotopic fractionations can be minimized under conditions appropriate for the analysis of natural waters, and with careful calibration, SPME and irmGC/MS should be a valuable means for isotopic analyses for a wide range of organic constituents in aqueous samples.  相似文献   

2.
Sol-gel capillary microextraction (sol-gel CME) is introduced as a viable solventless extraction technique for the preconcentration of trace analytes. To our knowledge, this is the first report on the use of sol-gel-coated capillaries in analytical microextraction. Sol-gel-coated capillaries were employed for the extraction and preconcentration of a wide variety of polar and nonpolar analytes. Two different types of sol-gel coatings were used for extraction: sol-gel poly(dimethylsiloxane) (PDMS) and sol-gel poly(ethylene glycol) (PEG). An in-house-assembled gravity-fed sample dispensing unit was used to perform the extraction. The analysis of the extracted analytes was performed by gas chromatography (GC). The extracted analytes were transferred to the GC column via thermal desorption. For this, the capillary with the extracted analytes was connected to the inlet end of the GC column using a two-way press-fit fused-silica connector housed inside the GC injection port. Desorption of the analytes from the extraction capillary was performed by rapid temperature programming (at 100 degrees C/min) of the GC injection port. The desorbed analytes were transported down the system by the helium flow and further focused at the inlet end of the GC column maintained at 30 degrees C. Sol-gel PDMS capillaries were used for the extraction of nonpolar and moderately polar compounds (polycyclic aromatic hydrocarbons, aldehydes, ketones), while sol-gel PEG capillaries were used for the extraction of polar compounds (alcohols, phenols, amines). The technique is characterized by excellent reproducibility. For both polar and nonpolar analytes, the run-to-run and capillary-to-capillary RSD values for GC peak areas remained under 6% and 4%, respectively. The technique also demonstrated excellent extraction sensitivity. Parts per quadrillion level detection limits were achieved by coupling sol-gel CME with GC-FID. The use of thicker sol-gel coatings and longer capillary segments of larger diameter (or capillaries with sol-gel monolithic beds) should lead to further enhancement of the extraction sensitivity.  相似文献   

3.
Dimethyl sulfide (DMS) derived from marine biological activity affects radiative forcing of the climate. The general analytical technique for DMS in seawater (purge and trap analytical method, P&T) is complex onboard ship. Thus it is difficult to obtain sufficient data for a comprehensive understanding of the spatiotemporal variability of DMS in the sea surface layer. On the other hand, a new analytical method for DMS using SPME (solid-phase microextraction) has recently been developed as an alternative method to P&T. This method is simpler than P&T because no special or complex apparatus is needed. If it is possible to preserve DMS for an extended period in excess of the duration of the cruise, the SPME method is a promising method for measuring DMS in seawater. We assessed an analytical method which can allow us to preserve DMS on the long-term scale using SPME. In liquid nitrogen (-196 degrees C), as preserved environment, for a period of 20 days after sampling, we found the preservation rate of DMS to be 94.7 +/- 4.4% (n = 6) in this study. Furthermore, estimating the distribution coefficient with respect to the effect of salinity on SPME, we found that DMS changed by 0.1 nM/% sal, suggesting that salinity has only a minor influence on oceanic DMS measurements in the open ocean because the minimal change of the open ocean salinity is within 2 %. Applying the SPME method to open ocean samples, we found that there were no significant differences in DMS between the unpreserved and preserved samples (r = 0.99, n = 26, SE = 0.01, p < 0.0001), showing the SPME method has potential for use for open ocean surveys.  相似文献   

4.
In this study, we propose for the first time the use of solid-phase microextraction (SPME) in combination with liquid chromatography-mass spectrometry for untargeted metabolomic profiling of biological fluids. To achieve this goal, we first systematically evaluated 42 different SPME coatings for the extraction of 36 metabolites from different chemical classes and of widely varying polarities (log P range of -7.9 to 7.4) in order to identify SPME coatings which are the most suitable for metabolomic studies and to improve the extraction of polar metabolites over the existing commercial SPME devices. Three types of SPME coatings (mixed-mode coatings, polar-enhanced polystyrene-divinylbenzene, and phenylboronic acid) performed the best for simultaneous extraction of both hydrophilic and hydrophobic metabolites at physiological conditions, thus making them suitable for untargeted metabolomic profiling applications. A rapid and simple SPME method was then developed with single-use biocompatible mixed-mode coating for the metabolomic profiling of human plasma in combination with liquid chromatography-high-resolution mass spectrometry on a benchtop Orbitrap system. This optimized SPME method was evaluated versus ultrafiltration and solvent precipitation in terms of metabolite coverage and method precision. SPME detected 1592-3320 features versus 2082-3245 features detected by solvent precipitation methods and 2093-2686 detected for ultrafiltration using the same pooled human plasma sample. Method precision of SPME ranged between 11% and 18% (expressed as median relative standard deviation (RSD) of n = 7 replicates) versus 8-19% for solvent precipitation and 20-22% for ultrafiltration. The results demonstrate that the proposed SPME methodology reduces ionization suppression, provides free concentration information for hydrophobic analytes which are not detected by ultrafiltration methods, and can improve metabolite coverage over existing methodologies.  相似文献   

5.
The technique of automated in-tube solid-phase microextraction (SPME) coupled with liquid chromatography/electrospray ionization mass spectrometry (LC/ESI-MS) was evaluated for the determination of beta-blockers in urine and serum samples. In-tube SPME is an extraction technique for organic compounds in aqueous samples, in which analytes are extracted from the sample directly into an open tubular capillary by repeated draw/eject cycles of sample solution. LC/MS analyses of beta-blockers were initially performed by liquid injection onto a LC column. Nine beta-blockers tested in this study gave very simple ESI mass spectra, and strong signals corresponding to [M + H]+ were observed for all beta-blockers. The beta-blockers were separated with a Hypersil BDS C18 column using acetonitrile/methanol/water/acetic acid (15:15:70:1) as a mobile phase. To optimize the extraction of beta-blockers, several in-tube SPME parameters were examined. The optimum extraction conditions were 15 draw/eject cycles of 30 microL of sample in 100 mM Tris-HCl (pH 8.5) at a flow rate of 100 microL/min using an Omegawax 250 capillary (Supelco, Bellefonte, PA). The beta-blockers extracted by the capillary were easily desorbed by mobile-phase flow, and carryover of beta-blockers was not observed. Using in-tube SPME/LC/ESI-MS with selected ion monitoring, the calibration curves of beta-blockers were linear in the range from 2 to 100 ng/mL with correlation coefficients above 0.9982 (n = 18) and detection limits (S/N = 3) of 0.1-1.2 ng/mL. This method was successfully applied to the analysis of biological samples without interference peaks. The recoveries of beta-blockers spiked into human urine and serum samples were above 84 and 71%, respectively. A serum sample from a patient administrated propranolol was analyzed using this method and both propranolol and its metabolites were detected.  相似文献   

6.
A novel sol-gel method is described for the preparation of solid-phase microextraction (SPME) fibers. The protective polyimide coating was removed from a 1-cm end segment of a 200 μm o.d. fused-silica fiber, and the exposed outer surface was coated with a bonded sol-gel layer of poly(dimethylsiloxane) (PDMS). The chemistry behind this coating technique is presented. Efficient SPME-GC analyses of polycyclic aromatic hydrocarbons, alkanes, aniline derivatives, alcohols, and phenolic compounds in dilute aqueous solutions were achieved using sol-gel-coated PDMS fibers. The extracted analytes were transferred to a GC injector using an in-house-designed SPME syringe that also allowed for easy change of SPME fibers. Electron microscopy experiments suggested a porous structure for the sol-gel coating with a thickness of ~10 μm. The coating porosity provided higher surface area and allowed for the use of thinner coatings (compared with 100-μm-thick coatings for conventional SPME fibers) to achieve acceptable stationary-phase loadings and sample capacities. Enhanced surface area of sol-gel coatings, in turn, provided efficient analyte extraction rates from solution. Experimental results on thermal stability of sol-gel PDMS fibers were compared with those for commercial 100-μm PDMS fibers. Our findings suggest that sol-gel PDMS fibers possess significantly higher thermal stability (>320 °C) than conventionally coated PDMS fibers that often start bleeding at 200 °C. This is due, in part, to the strong chemical bonding between the sol-gel-generated organic-inorganic composite coating and the silica surface. Enhanced thermal stability allowed the use of higher injection port temperatures for efficient desorption of less-volatile analytes and should translate into extended range of analytes that can be handled by SPME-GC techniques. Experimental evidence is provided that supports the operational advantages of sol-gel coatings in SPME-GC analysis.  相似文献   

7.
Solid-phase microextraction (SPME) fiber coatings based on conductive polypyrrole films were prepared for the electrochemical extraction and desorption of ionic analytes. Simple preparation of each of the PPY extraction coatings on a platinum wire was possible with a constant potential method, but more importantly, cycling of the film between oxidation and reduction potentials facilitated the extraction and desorption of ionic analytes. The analytes were desorbed into a sample aliquot of water and were determined by flow injection analysis using a mass spectrometer. The fiber coatings and the developed electrochemical SPME method were found to be stable and reproducible (RSD < 5%; N = 5) and could be extended to several cations and anions, confirming the versatility of the approach. Preconcentration of the analyte on the fiber was also possible by repeating the processes to increase the amount of analyte extracted.  相似文献   

8.
Biocompatible C18-polyacrylonitrile (PAN) coating was used as the extraction phase for an automated 96-blade solid phase microextraction (SPME) system with thin-film geometry. Three different methods of coating preparation (dipping, brush painting, and spraying) were evaluated; the spraying method was optimum in terms of its stability and reusability. The high-throughput sample preparation was achieved by using a robotic autosampler that enabled simultaneous preparation of 96 samples in 96-well-plate format. The increased volume of the extraction phase of the C18-PAN thin film coating resulted in significant enhancement in the extraction recovery when compared with that of the C18-PAN rod fibers. Various factors, such as reusability, reproducibility, pH stability, and reliability of the coating were evaluated. The results showed that the C18-PAN 96-blade SPME coating presented good extraction recovery, long-term reusability, good reproducibility, and biocompatibility. The limits of detection and quantitation were in the ranges of 0.1-0.3 and 0.5-1 ng/mL for all four analytes.  相似文献   

9.
Traditional static headspace and headspace solid-phase microextraction (SPME) techniques were compared for their effectiveness in the extraction of volatile flavor compounds from the headspace of various juice samples. Each method was used to evaluate the responses of certain analytes from real samples and calibration standards in order to provide sensitivity comparisons between the two techniques. Experimental results showed traditional static headspace lacked the sensitivity needed to evaluate certain flavor volatiles, such as α-terpinene and linalool, and that further concentration of the headspace was necessary. Dramatic improvements in the extraction abilities of the SPME fibers over the traditional static headspace method were noted. Different SPME fibers were investigated to determine the selectivities of the various fibers to the different flavor compounds present in the juice samples. Of the various fibers investigated, the PDMS/DVB fiber proved to be the most useful for these analyses. Aging studies of juice samples were also performed which verified that degradation could be observed and quantified.  相似文献   

10.
The properties of a thin sheet of poly(dimethylsiloxane) (PDMS) membrane as an extraction phase were examined and compared to solid-phase microextraction (SPME) PDMS-coated fiber for application to semivolatile analytes in direct and headspace modes. This new PDMS extraction approach showed much higher extraction rates because of the larger surface area to extraction-phase volume ratio of the thin film. Unlike the coated rod formats of SPME using thick coatings, the high extraction rate of the membrane SPME technique allows larger amounts of analytes to be extracted within a short period of time. Therefore, higher extraction efficiency and sensitivity can be achieved without sacrificing analysis time. In direct membrane SPME extraction, a linear relationship was found between the initial rate of extraction and the surface area of the extraction phase. However, for headspace extraction, the rates were somewhat lower because of the resistance to analyte transport at the sample matrix/headspace barrier. It was found that the effect of this barrier could be reduced by increasing either agitation, temperature, or surface area of the sample matrix/headspace interface. A method for the determination of PAHs in spiked lake water samples was developed based on the membrane PDMS extraction coupled with GC/MS. A linearity of 0.9960 and detection limits in the low-ppt level were found. The reproducibility was found to vary from 2.8% to 10.7%.  相似文献   

11.
A procedure based on matrix solid-phase dispersion (MSPD) for sample preparation in the analysis of some bromophenols and halogenated bisphenols in sediments and sludges has been developed. For the first time ever, MSPD was applied for the extraction of organic contaminants from sediment and sewage sludge samples. The influence of experimental conditions on the yield of the extraction process and on the efficiency of the built-in cleanup step was thoroughly evaluated. Analysis of the extracts was performed by nonaqueous capillary electrophoresis coupled with photodiode array ultraviolet detection, using large-volume sample stacking injection based on the electroosmotic flow pump as an on-column preconcentration technique. The method was applied to the analysis of real sludges from urban sewage treatment plants, as well as river and marine sediment samples.  相似文献   

12.
We present a new method for the determination of 29 endocrine-disrupting compounds in marine water. This method is based on a solid-phase extraction preconcentration technique, followed by a nanoscale liquid chromatography/direct-electron ionization (EI) mass spectrometric analysis. Direct-EI is a novel technique for the rapid conversion of a GC/MS into an efficient and reliable LC/MS for EI detection. The capability to acquire EI mass spectra of the analytes, and to operate in selected ion monitoring mode during real sample analyses, allows certain identification and precise quantification. In addition, this method is not influenced by the polarity of the analytes and does not require different detection modes (positive and negative) for identification with API techniques. Limits of detection of the method span from 0.4 to 118.7 ng.L(-1), corresponding to an instrumental detection limit of 0.005-1.260 ng. Linear regression and recovery experiment data, together with their standard deviations, are also presented. Marine water samples were collected along the middle-western Adriatic Coast (Italy), near the shore and at the mouth of rivers and canals.  相似文献   

13.
Wu HF  Yen JH  Chin CC 《Analytical chemistry》2006,78(5):1707-1712
A novel analytical technique termed drop-to-drop solvent microextraction (DDSME) was developed to determine three methoxyacetophenone isomers in one drop of water, which were then detected by gas chromatography/mass spectrometry using electronic ionization mass spectrometry for quantification analysis and self-ion/molecule reaction/tandem mass spectrometry for isomer differentiation. The best optimum parameters for the DDSME technique were as follows: extraction time, 5 min; using toluene as the extraction solvent; volume of extraction solvent, 0.5 microL and no salt addition. The advantages of this method are rapidity, convenience, ease of operation, simplicity of the device, and extremely little solvent and sample consumption. The limit of detection (LOD) for this technique was 1 ng/mL. The relative standard deviation was less than 2.6% (n = 5). The linear range of the calibration curve of DDSME is from 0.01 to 5 microg/mL with correlation coefficient (r2) of >0.954. In the comparison of the LOD of DDSME with other sample pretreatment methods including liquid/liquid extraction (LLE), single-drop microextraction (SDME), solid-phase microextraction (SPME), and liquid-phase microextraction (LPME) using a dual gauge microsyringe with hollow fiber methods, this method shows much better in sensitivity than the LLE (25 ng/mL) and it is compatible with SDME (0.5 ng/mL), SPME (0.5 ng/mL), and LPME using a dual gauge microsyringe with a hollow fiber (1 ng/mL). However, DDSME was more convenient than the LPME using a dual gauge microsyringe with a hollow fiber method and much lower cost than the SPME technique.  相似文献   

14.
A monolithic silica column high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) method has been developed for the high-speed direct simultaneous determination of a drug discovery compound and its major circulating metabolite (M-72) in rat plasma. This methodology makes use of flow programming and an alkyl-bonded silica rod column for fast macromolecule removal and chromatographic separation without the need for significant sample preparation. The matrix ionization suppression effect on the monolithic column HPLC-MS/MS system was investigated using the postcolumn infusion technique. After 200 plasma injections on a 50 x 4.6 mm monolithic silica column, consistent column efficiency of close to 39,000 theoretical plates/m and reproducible retention times for the analytes were observed. The apparent on-column recoveries of 12 test compounds in rat plasma samples were greater than 90%. The proposed fast direct plasma injection method was tested over a 3-day period with the interday coefficient of variation less than 15% for both analytes.  相似文献   

15.
When an SPME fiber is exposed for a short period of time to a flowing fluid sample, the amount of extracted analyte depends on its diffusion coefficient in the matrix medium, and it can be correlated to its concentration using a simple mathematical model. This work discusses the extension of this approach, already validated for gaseous samples and SPME fibers coated with strong adsorbent coatings, to the diffusion-based quantification of analytes present in aqueous samples. Dilute aqueous solutions of aromatic hydrocarbons were used as model samples and vials were modified to use conventional magnetic agitation with controlled tangential flow of the test solution around the fiber. It was demonstrated that, with proper selection of the stirring speed and sampling time, the same diffusion-based quantitative model used for gas samples could be employed. Under optimal conditions, the concentrations of the evaluated aromatic hydrocarbons were estimated with relative standard deviations between 0.8 and 3.6% and without deviation from the expected values within this precision range. Considering the extraction times involved, between 30 and 60 s, the approach here presented is the fastest possible technique for direct extraction of analytes from liquid samples.  相似文献   

16.
A novel on-line method is presented for the extraction and preconcentration of amino acids using a sol-gel-coated column coupled to a conventional UV/visible detector. The presented approach does not require any additional modification of the commercially available standard CE instrument. Extraction, stacking, and focusing techniques were used in the preconcentration procedures. Sol-gel coatings were created by using N-octadecyldimethyl[3-(trimethoxysilyl)propyl]ammonium chloride (C18-TMS) in the coating sol solutions. Due to the presence of a positively charged quaternary ammonium moiety in C18-TMS, the resulting sol-gel coating carried a positive charge. For extraction, the pH of the samples was properly adjusted to impart a net negative charge to amino acids. A long plug of the sample was then passed through the sol-gel-coated capillary to facilitate extraction via electrostatic interaction between the positively charged sol-gel coating and the negatively charged amino acid molecules. Focusing of the extracted amino acids was accomplished through desorption of the extracted amino acid molecules carried out by local pH change. Two different methods are described. Both methods showed excellent extraction and preconcentration effects. Preconcentration results obtained on sol-gel-coated columns were compared with the CZE analysis performed on bare fused-silica columns with traditional sample injections. The described procedure provided a 150,000-fold enrichment effect for alanine. The two methods provided acceptable repeatability in terms of both peak height and migration time.  相似文献   

17.
Anodized aluminum wire as a solid-phase microextraction fiber   总被引:1,自引:0,他引:1  
The efficiency of anodized aluminum wire was investigated as a new fiber for solid-phase microextraction (SPME). Aluminum wires were anodized by direct current in a solution of sulfuric acid at room temperature and were conditioned at 300 degrees C for 30 min. These fibers were used for the extraction of some aliphatic alcohols, BTEX, and petroleum products from gaseous samples. The extracted analytes were transferred to a GC injector using an (inhouse-designed) SPME syringe that also allowed for an easy change of SPME fibers. The results obtained prove the ability of anodized aluminum wire as a new fiber for sampling of organic compounds from gaseous samples. This behavior is due most probably to the porous layer of aluminum oxide, which is formed on the metal surfaces. In this work, the optimum conditions for the preparation and conditioning of fibers and the extraction of analytes from gaseous samples were obtained. In the optimum conditions, one fiber was used in several equal analyses and the relative standard deviations were below 5% (n = 5). However, fiber-to-fiber reproducibility was 8% (n = 5). This fiber is firm, inexpensive, and durable and can be prepared simply.  相似文献   

18.
A molecularly imprinted polymer (MIP) material was synthesized for use as an in-tube solid-phase microextraction (SPME) adsorbent. The inherent selectivity and chemical and physical robustness of the MIP material was demonstrated as an effective stationary-phase material for in-tube SPME. An automated and on-line MIP SPME extraction method was developed for propranolol determination in biological fluids. This simplified the sample preparation process and the chromatographic separation of several beta-blocker compounds. The method developed for propranolol showed improved selectivity in comparison to alternative in-tube stationary-phase materials, overcoming the limitations of existing SPME coating materials. Preconcentration of the sample by the MIP adsorbent increased the sensitivity, yielding a limit of detection of 0.32 microg/mL by UV detection. Excellent method reproducibility (RSD < 5.0%) and column reusability (> 500 injections) were observed over a fairly wide linear dynamic range (0.5-100 microg/mL) in serum samples. To our knowledge, this is the first report on the automated application of a MIP material for in-tube SPME. The method was inexpensive, simple to set up, and simplified the choice of SPME adsorbent for in-tube extraction. The approach can potentially be extended to other MIPs for the determination of a wide range of chemically significant analytes.  相似文献   

19.
L Zhu  C Tu  H K Lee 《Analytical chemistry》2001,73(23):5655-5660
This paper describes a novel method that applies field-amplified sample injection (FASI) in micellar electrokinetic chromatography (MEKC) with a low pH background electrolyte (BGE). Six phenolic compounds prepared in water or NaOH solution were used as the test analytes. Sample was injected electrokinetically after the introduction of a plug of water. During the injection, the water plug was pumped out of the capillary inlet by the electroosmotic flow, and the phenolic anions migrated very quickly in the direction of the outlet. When the anions reached the boundary between the water plug and BGE, they were neutralized and ceased moving. Thereafter, MEKC was initiated for the separation. This on-line preconcentration method could be conveniently coupled with a liquid-liquid-liquid microextraction procedure, in which a hollow fiber was used as an extraction solvent support to extract the analytes from the water sample. The acceptor phase consisted of 8 mM NaOH. After extraction, the extract was analyzed directly by MEKC, as described.  相似文献   

20.
"Earthy-musty" off-flavor problems in water samples are due to organic compounds present at the sub-part-per-trillion level. Numerous analytical methods such as purge and trap, liquid/liquid extraction, and closed-loop stripping analysis (CLSA) followed by GC/MS analysis have been used to determine these compounds. However, these methods offer poor sensitivity (detection limits of approximately 1 to 10 ng/L) when compared to the 20-30 pg/L of sensorial sensitivity. The purpose of this study was to develop a new method involving a modified CLSA preconcentration technique together with large volume injection GC/MS in order to attain analytical sensitivity equal to or better than olfactory sensitivity. For eight target compounds that cause taste and odor problems in water at trace levels, the method developed was linear in the 0.05-10 ng/L range and provided recoveries greater than 70% together with satisfactory repeatability. Detection limits as low as 15-30 pg/L were achieved, representing a 50-fold improvement in sensitivity as compared to current methods. The accuracy and sensitivity of the method were demonstrated in different aqueous matrixes, including raw surface water. The method was successfully applied to earthy-musty water samples that had remained unsolved by conventional techniques, thus proving its effectiveness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号