首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The mechanical behaviors of a polyethylene (PE) bulk consisting of amorphous molecular chains under uniaxial tension have been explored using molecular simulations. The stress–strain relationship and the plastic deformations of the PE bulk have been analyzed. Two deformation stages were found in the stress–strain curve, the elastic stage with a straight linear part of the curve and the plastic stage with a flat sawtooth‐like part. The Young's modulus calculated from the elastic part is in good agreement with experimental results. Some key parameters such as the energy variations in different terms reveal that the interchain slip should be chiefly responsible for the initial plastic deformations of amorphous PE under uniaxial tension. In order to address how this slip influences the plastic deformations, the mechanical details of a single chain have been elucidated when it was pulled out from two PE clusters consisting of regular and amorphous chains, respectively. The interchain slip, found as the basic movement style, is responsible for the movement of the stretched chain. Both the critical slip force and the critical slip length have been found in these two cases. For the straight chain pulled out from the cluster with regular chains, the critical slip force is about 1.81 nN and the critical slip length is about 40 polymerization degrees. While for the chain in the amorphous cluster, the critical force is about 0.86 nN and the critical length is almost the same. Based on the simulation results, a meso slip model has been deduced to explain the behaviors of the amorphous PE bulk under uniaxial tension. With reference to the slip model of single crystals and polycrystals a constitutive relation was obtained by considering the Young's modulus, the equivalent slip stress and the average orientation parameters of each chain. The comparison of the results from the constitutive relation and the simulations proves that this model does well in predicting the mechanical behaviors of amorphous PE under uniaxial tension in general. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 986–998  相似文献   

3.
A model for non-linear creep in polypropylene   总被引:1,自引:0,他引:1  
Measurements of the creep behaviour of a polypropylene polymer under uniaxial tension have been modelled using a stretched exponential function with four parameters. Non-linear behaviour arises because one of the parameters, related to a mean retardation time for the relaxation process responsible for creep, is dependent on stress. Creep curves measured under a uniaxial tensile stress and a uniaxial compressive stress of the same magnitude are different. The differences can be described by relating the retardation time parameter to an effective stress that is determined by the magnitude of both the shear component of the stress and the hydrostatic component. This analysis has then been generalised to enable expressions to be formulated for creep behaviour under an arbitrary multiaxial stress state. This requires an assumption that either the Poisson's ratio or the bulk modulus is independent of time. The validity of this assumption has been evaluated through comparisons of predictions of creep under a pure shear stress with measurements, which show that a time-independent Poisson's ratio is the better approximation. Although not the main theme of the paper, examples are given illustrating the dependence of model parameters on the structure of the crystalline and amorphous regions of the polymer. This is particularly relevant to the application of the model to the analysis of the creep behaviour of welded polypropylene where properties will, in general, be influenced by the heat treatment.  相似文献   

4.
The mechanical responses of high‐density polyethylene (HDPE), polypropylene (PP) and polyamide 6 (PA 6) were experimentally investigated for a wide range of stress states and strain rates. This was accomplished by testing numerous specimens with different geometries. The uniaxial compression of cylindrical unnotched specimens and the uniaxial tensile behaviour of dumbbell specimens at different strain rates, was determined. A series of biaxial loading tests (combined shear and tension/compression, pure shear, pure tension/compression) using a designed Arcan testing apparatus were also performed. Flat and cylindrical notched specimens with different curvature radii were additionally tested in order to explore a wider range of stress states. The Drucker‐Prager yield criterion was calibrated with a set of experimental data, for which analytical formulae for stresses are available, and then applied to predict the deformation behaviour under different stress states, prior to strain localization. The results of the numerical simulations show that the Drucker‐Prager model can capture the initial elastic range and the post‐elastic response very satisfactorily. For triaxial and biaxial stress states there is a good agreement, however some load‐displacement responses are only satisfactorily described. Deviations observed in the predicted and experimental results are very likely attributed to the third invariant stress tensor, which was not explored in the model calibration. The evolution of stress triaxiality and Lode angle parameters with equivalent plastic strain were extracted and analysed for several specimens. The results show a plastic yielding behaviour sensitive to the stress state, which can be attributed to different combinations of stress triaxialities and Lode angle parameters.  相似文献   

5.
Results of studies aimed at developing a new approach to measuring stress-strain properties of nanosized solids (strength, yield stress, and the value of plastic deformation at uniaxial tension) are generalized. This approach is based on the analysis of the parameters of microrelief arising upon the deformation of polymer films with thin coatings. It is demonstrated for the first time that the stress-strain properties of aluminum coatings deposited onto Lavsan substrates depend on the level of stresses in the substrate, the value of its deformation, and the thickness of the coating. The evolution of these parameters is related to the strain hardening of metal and the effect of nanostructuring of crystalline materials in the range of small thicknesses. When precious metal (Au, Pt) nanosized films are deposited onto polymers by ion-plasma sputtering, in the course of metal deposition, polymer surface layers interact with cold plasma. Stress-strain properties of polymer surface layers modified by plasma are quantitatively estimated for the first time. The model is proposed that makes it possible to take into account the contribution of the properties of precious metal and plasma-modified polymer surface layer to the strength of the coating.  相似文献   

6.
Mechanical properties of hydrated bacterial cellulose have been tested as a function of fermentation time and following the alkali treatment required for sterilisation prior to biomedical applications. Bacterial cellulose behaves as a viscoelastic material, with brittle failure reached at approximately 20% strain and 1.5 MPa stress under uniaxial tension. Treatment with 0.1 M NaOH resulted in minimal effects on the mechanical properties of bacterial cellulose. Fermentation time had a large effect on both bacterial numbers and cellulose yield but only minor effects on mechanical properties, showing that the fermentation system is a robust method for producing cellulose with predictable materials properties. The failure zone in uniaxial tension was shown to be associated with large-scale fibre alignment, consistent with this being the major determinant of mechanical properties. Under uniaxial tension, elastic moduli and failure stresses are an order of magnitude lower than those obtained under biaxial tension, consistent with the fibre alignment mechanism which is not available under biaxial tension.  相似文献   

7.
The healing of scratches on the surface of vitreous selenium was observed over a period of nine weeks, and from the data the solid surface tension of vitreous Se is estimated to be (100 ± 20) dyne/cm at 38.8°C, about the same as that of the liquid at the melting point. This value is three times as large as the critical surface tension determined from contact angle measurements, which indicates that for vitreous Se in contact with organic liquids, the solid—liquid interfacial tension is about two-thirds as much as the solid surface tension. The present method of measurement can probably be used to determine the solid surface tension of other polymers, and by measuring the healing of scratches on a solid immersed in a liquid the method could be used to determine the solid—liquid interfacial tension.  相似文献   

8.
单向应力条件下松弛时间率相关的非线性粘弹性本构模型   总被引:1,自引:0,他引:1  
基于单向拉伸实验研究和内变量理论 ,提出了一种新的简单的一维非线性粘弹性本构关系 .对两种粘弹性材料 ,即高密度聚乙烯和聚丙烯进行了不同加载速率作用下的拉伸实验研究 ,实验结果表明 ,两种材料的应力应变关系与加载速率相关 ;对材料的应力应变实验数据进行拟合发现 ,材料的松弛时间具有很强的应变率相关性 ,当应变率发生数量级变化时 ,材料的松弛时间也发生数量级的变化 .采用内变量理论 ,导出了在单轴应力条件下松弛时间率相关的非线性粘弹性本构关系的迭代形式 ,并给出其收敛条件 .当采取一次迭代形式时 ,本构关系退化为松弛时间率相关的Maxwell模型 .数值拟合的结果表明 ,一次迭代形式的本构关系就可以很好地拟合和预测实验结果 .  相似文献   

9.
The deuterium NMR (2H-NMR) is used for probing the chain segment orientation in polymer networks under uniaxial stress. The method is based on the observation of an incomplete time averaging of quadrupolar interactions affixed to deuterated segments. The samples are end-linked polydimethylsiloxane networks. The 2H-NMR experiments are performed either on labelled network chains or an labelled probe polymer chains dissolved in the network. The basic results are the following: — The induced uniaxial order is related to a uniaxial dynamics of chain segments around the direction of the applied constraint. — A permanent orientation is observed on free polymer chains dissolved in the deformed networks. — The mean degrees of orientational order induced along short and long chains in bimodal networks are the same. These experimental facts appear as evidences for cooperative orientational couplings between chain segments in the deformed networks.  相似文献   

10.
The deformation and fracture behavior under uniaxial tension were characterized for high‐energy irradiated poly(vinylidene fluoride‐trifluorethylene) (P(VDF‐TrFE)) 68/32 mol % copolymer films. The results show that the stress–strain behavior of the irradiated copolymer films exhibits ductile polymeric behavior, with its fracture strain being more than five times of that of the nonirradiated ones but of much lower maximum strength. X‐ray diffraction (XRD) analysis and scanning electron microscope (SEM) observation are carried out to examine the microstructure and morphology changes caused by the uniaxial tension. It is demonstrated that the tensile mechanical field reintroduces the polar β‐phase that was previously lost through irradiation. It is suggested that the conformational change from the nonpolar phase to the polar β‐phase during the uniaxial tension, as well as the low crystallinity and loosely packed molecular chain structure, mainly contribute to the observed stress–strain behavior for the irradiated copolymer films. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 2563–2567, 2007  相似文献   

11.
The deformation and fracture behavior under uniaxial tension was characterized for P(VDF‐TrFE) 68/32 mol % copolymer films prepared under two different processing conditions. It was found that the copolymer films prepared by solution casting and then annealing show a typical polymeric brittle fracture feature. For the copolymer films prepared by stretching the solution‐cast films and then annealing process, a typical linearly strengthening stage occurs in the stress–strain curve after yielding, and the polymer film samples fracture at a much larger maximum strain and a higher tensile strength than those prepared by the former process. SEM observation and XRD analysis were carried out to examine the morphology and microstructure change during uniaxial tension. The results show that for the stretched film samples, the polymer chains undergo slipping or further reorientation during uniaxial tension, causing the increase of the peak intensity in the X‐ray diffraction pattern. For the directly annealed ones, no yielding phenomenon is observed and there is no apparent X‐ray diffraction intensity change. It was suggested that the highly‐oriented fibril structure of the stretched film samples contributes to the linearly strengthening stage after yielding in the stress–strain curve. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 3255–3260, 2005  相似文献   

12.
A phenomenological modification of the eXtended Pom-Pom (XPP) model is proposed with the aim to reduce the number of free nonlinear parameters. The modified XPP model includes three parameters per mode in total (two linear viscoelastic parameters—linear relaxation time λ and shear modulus G, and one nonlinear parameter). The original XPP model contains five parameters (two linear viscoelastic parameters and three nonlinear ones, one nonlinear parameter participates in the second normal stress difference prediction). The predictive/fitting capabilities of the modified model are compared with the Giesekus, eXtended Pom-Pom, and modified Leonov models using various low-density PE materials in steady and transient shear and uniaxial elongational flows. It has been found that the modified model is capable of predicting/fitting the rheological properties, with the exception of the second normal stress difference, for studied LDPE materials with sufficient accuracy, including strain hardening in uniaxial elongational flow.  相似文献   

13.
This paper deals with the formation of crazes that may be caused by an external load on glassy polymers wetted with kerosene. First, the orientation of crazes has been determined when applying a uniaxial tension to a specimen of cold-rolled polyvinyl chloride sheet at various angles to the rolling direction. The critical stress for craze initiation in poly(methyl methacrylate) and polyvinyl chloride rods has been investigated under combined tension–torsion loading. It is shown that: (1) in an anisotropic, as well as an isotropic polymer, the direction of crazes is perpendicular to that of the maximum strain calculated by taking into account the internal stress due to rolling; and (2) under the action of a crazing agent, crazing may occur even under the pure torsional load, i.e., in the absence of dilatational stress.  相似文献   

14.
李良彬 《高分子科学》2015,33(5):754-762
A biaxial stretching equipment was designed and constructed to enable fundamental studies of the relationship between film processing conditions and structures of oriented film products. With programmable drive motors and scissorlike mechanism, all stretching modes, including uniaxial stretching with constant and free width, simultaneous and sequential biaxial stretching, can be applied to a square-shaped sheet. Parameters related to film stretching manufacturing, such as temperature, draw ratio and stretching speed can be set independently to meet the requirement of different polymers. The force information during stretching is recorded by two miniature tension sensors in two directions independently, which can monitor the mechanical stimulus and stress response. Using this equipment, experiments are conducted to investigate the influence of stretching parameters on the structure of polypropylene films, which provides an effective method to tailor the processing conditions to obtain the films with desired properties.  相似文献   

15.
Acoustic Emission (AE) was investigated in order to monitor in real time the Mullins effect. Cyclic uniaxial tensile tests were carried out on two different natural rubbers. Different behaviour is revealed depending on whether or not the material undergoes the Mullins effect. The acoustic emission activity is very important during the first cycle, but decreases gradually with increasing number of cycles, when the Mullins effect is observed. On the contrary, when there is no Mullins effect no significant AE activity is recorded.  相似文献   

16.
采用微波消解法与电感耦合等离子体原子发射光谱(ICP-AES)法相结合的方式,建立了镍基耐蚀合金中镍元素含量的测定方法。试样在浓硝酸和浓盐酸中微波消解后,用电感耦合等离子体原子发射光谱仪在优化的工作参数下测定,结果表明,稀释的消解液可直接用于镍含量的测定,光谱干扰少。对镍基耐蚀合金中镍含量进行多次平行测定,相对标准偏差(RSD,n=7)为0.29%,且测得值与标准值结果一致。对不同的镍基耐蚀合金样品进行加标回收实验,加标回收率在98.5%~102%。标准物质验证实验表明,测得值与标准值一致。  相似文献   

17.
Magnetorheological Elastomers (MREs) are “smart” materials whose physical properties are altered by the application of magnetic fields. In previous studies the properties of MREs have been evaluated under a variety of conditions, however little attention has been paid to the recording and reporting of the magnetic fields used in these tests [1]. Currently there is no standard accepted method for specifying the magnetic field applied during MRE testing. This study presents a detailed map of a magnetic field applied during MRE tests as well as providing the first comparative results for uniaxial and biaxial testing under high strain fatigue test conditions. Both uniaxial tension tests and equi-biaxial bubble inflation tests were performed on isotropic natural rubber MREs using the same magnetic fields having magnetic flux densities up to 206 mT. The samples were cycled between pre-set strain limits. The magnetic field was switched on for a number of consecutive cycles and off for the same number of following cycles. The resultant change in stress due to the application and removal of the magnetic field was recorded and results are presented.  相似文献   

18.
The high-temperature behaviour of a Nickel alloy submitted to uniaxial tension, relaxation and creep, is analysed using a thermodynamics approach to non-linear relaxations. The model is essentially based on a distribution of the dissipation processes obtained by the theory of fluctuations. The agreement between experiment and simulations requires the use of four parameters. These parameters depend on the elastic properties of the alloy and also on the thermal activation necessary for mobility defects. We present a comparison with the classical model of Chaboche including a recovery term in the potential of dissipation.  相似文献   

19.
A computational and experimental study of the mechanical properties of the Viksint U-2-28NT sealant under uniaxial elongation and shear is carried out. The possibility of strength calculation of the sealant in terms of the elongation ratio limit value measured by the tension test results is shown.  相似文献   

20.
《Liquid crystals》1999,26(6):825-833
Rheological functions for uniaxial extensional flows predicted by a previously selected and validated constitutive equation (CE) for discotic mesophases are presented. The predicted relations between extensional viscosities, flow-induced microstructure, processing conditions, and material parameters of discotic mesophases are characterized and discussed. It is found that, in contrast to rod-like nematics, two distinct uniaxial extensional viscosities need to be defined to characterize the extensional rheological functions of discotic mesophases completely. The model predicts non-Troutonian extensional viscosities of discotic nematics, such as strain thinning and strain thickening, depending on the process temperature, and the ratio of viscous to elastic stress contributions. The uniaxial extensional viscosities are also found to depend strongly on the flow-induced microstructure. The rheological analysis is then used to characterize the relations between extensional flow viscosities and the classical microstructures that arise during the industrial fiber spinning of discotic mesophase pitches.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号