首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Sulfone-containing polyesters of 18 kinds having inherent viscosities of 1.19–0.16 dL g−1 were prepared derived from 4,4′-sulfonyl dibenzoyl chloride by solution polycondensation from various aromatic and aliphatic diols in nitrobenzene at 82°C. The polyesters were examined with IR spectra, inherent viscosity, x-ray diffraction, solubility, DSC, and TGA. Polyester (PE-7) with the greatest inherent viscosity may reflect that bisphenol A having a electron-releasing group increases nucleophilic properties of the phenolate anion. Diols such as bisphenol AF (PE-13) and brominated diols (PE-4, PE-10, and PE-16) gave less favorable results. The diffractograms showed that all polyesters were essentially amorphous except that obtained from bisphenol S and its derivatives. Almost all polyesters except PE-1 and PE-2 were soluble in DMF, THF, tetrachloroethane and phenol/sym-tetrachloroethane (60/40 by mass) but insoluble in typical organic solvents such as acetone, toluene, and chloroform. These polymers obtained from aromatic bisphenols lost no mass below 309°C, but 10% loss of mass was recorded above 380°C in nitrogen. © 1996 John Wiley & Sons, Inc.  相似文献   

2.
3.
A series of new polyesters was prepared from terephthaloyl (or isophthaloyl) chloride acid with various cardo bisphenols on solution polycondensation in nitrobenzene using pyridine as hydrogen chloride quencher at 150 °C. These polyesters were produced with inherent viscosities of 0.32–0.49 dL · g−1. Most of these polyesters exhibited excellent solubility in a variety of solvents such as N,N‐dimethylformamide, tetrahydrofuran, tetrachloroethane, dimethyl sulfoxide, N,N‐dimethylacetamide, N‐methyl‐2‐pyrrolidinone, m‐cresol, and o‐chlorophenol. The polyesters containing cardo groups including diphenylmethylene, tricyclo[5.2.1.02,6]decyl, tert‐butylcyclohexyl, phenylcyclohexyl, and cyclododecyl groups exhibited better solubility than bisphenol A–based polyesters. These polymers showed glass transition temperatures (Tg's) between 185 °C and 243 °C and decomposition temperatures at 10% weight loss ranging from 406 °C to 472 °C in nitrogen. These cardo polyesters exhibited higher Tg's and better solubility than bisphenol A‐based polyesters. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 4451–4456, 2000  相似文献   

4.
A novel polyaryloxydiphenylsilane was synthesized successfully by solution polycondensation of 2,2′-dimethyl-biphenyl-4,4′-diol with diphenyldichlorosilane and the catalyst triethylamine in toluene at 80 °C. Polymers with a relatively high inherent viscosity and yield were obtained when the reactions were carried out in aromatic and lipophilic solvents. The novel polyaryloxydiphenylsilane was soluble in chlorinated aliphatic hydrocarbons such as methylene chloride and chloroform as well as in polar solvents such as dimethyl sulfoxide, N,N-dimethylformamide, and N,N-dimethylacetamide and also in some common organic solvents such as benzene and toluene. However, it was insoluble in both aliphatic hydrocarbons as well as in alcoholic solvents. The polyaryloxydiphenylsilane began losing weight around 400 °C under a nitrogen atmosphere, and the 10% weight-loss temperature was 473 °C. The glass-transition temperature of the polyaryloxydiphenylsilane was 102 °C. The glass transition could be lowered by the copolymerization technique with 2,2-bis(4-hydroxy-3,5-dimethylphenyl)propane as an aromatic diol comonomer. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 4591–4595, 1999  相似文献   

5.
Polyarylates derived from 4,4″-dihydroxy-meta-terphenyl (DHmTP) were prepared by the phase-transfer catalyzed, two-phase polycondensation with aromatic diacid chlorides. The resulting polymers were crystalline, solvent resistant, and produced brittle films. Copolymers with bisphenol-A were also synthesized using isophthaloyl diacid chloride. At low to moderate levels of DHmTP in the copolymers (25–75%), the materials had high glass transition temperatures (186–201°C), good solvent resistance, and gave tough, clear films. Terpolymers of DHmTP and BPA with 50:50 isophthaloyl and terphthaloyl diacid chloride were prepared with not much improvement over Ardel D-100®. All the DHmTP-polyarylates had good thermal stability (5% weight loss in air > 415–460°C) and had a high % char (20–48%). © 1994 John Wiley & Sons, Inc.  相似文献   

6.
This article describes the synthesis and the properties of polyesters and copolyesters prepared from ethylene glycol, terephthalic acid, 4,4′ biphenyldicarboxylic acid (BDA), and 2,6-naphthlenedicarboxylic acid (NDA). The effect of incorporating varying levels of BDA and NDA on polyethylene terephthalate (PET) is described. Depending on the concentration, incorporation of BDA into PET leads to an improvement in glass transition temperature (Tg), strength, modulus, and barrier properties. Copolymers of PET containing up to about 50% BDA derived units are clear and have Tg's ranging from 85 to 105°C, making them suitable for applications where a high Tg along with clarity is important. Copolymers with higher BDA concentration are highly crystalline, with high rates of crystallization from the melt. Copolymerization of NDA with oligoethyleneterephthalate leads to copolymers that are generally amorphous. Crystallinity can be developed in copolymers with low concentration of NDA by thermal annealing. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 3139–3146, 1999  相似文献   

7.
N,N,N′,N′‐tetraalkyaminoazoxybenzene derivatives were conveniently prepared by the coupling of N,N‐dialkylnitrosoaniline in the presence of acetone and KOH. The reaction mechanism was proposed and investigated, and the structure of compound 3b was also confirmed by single crystal X‐ray diffractometry.  相似文献   

8.
A novel soluble, reactive ladderlike 4,4′‐phenylene ether‐bridged polyvinylsiloxane (L) was synthesized successfully for the first time by a stepwise coupling polymerization (SCP) including hydrolysis and polycondensation. The monomer, 4,4′‐bis(vinyldimethoxysilyl)phenylene ether (M), was synthesized by Grignard reaction. The structures of the monomer and the polymer were characterized by infrared spectrometry (IR), nuclear magnetic resonance (1H NMR, 13C NMR, 29Si NMR), mass spectrometry (MS), differential scanning calorimetry (DSC), X‐ray diffraction (XRD), and gel permeation chromatography (GPC). It is proposed from the characterization data that the polymer possesses an ordered ladderlike structure. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 2702–2710, 2000  相似文献   

9.
A series of fully aromatic, thermotropic polyesters based on 1,1′-binaphthyl-4,4′-diol, BND, was prepared by the melt polycondensation method and characterized for their thermotropic behavior by a variety of experimental techniques. The homopolymer of BND with terephthalic acid formed a nematic melt at 353°C. In contrast, the polyester from BND and 2,6-naphthalenedicarboxylic acid had a melting transition, Tm, above 400°C, so it was not possible with the equipment available to determine whether it formed a nematic melt. All of the copolymers of BND formed nematic melts at much lower Tm values than those of its respective homopolymers, as expected, because of the copolymerization effect of the added monomer. Moreover, all of the copolymers had higher glass transition temperatures, Tg, than those of other liquid crystalline polyesters and higher thermal stabilities. © 1994 John Wiley & Sons, Inc.  相似文献   

10.
Three novel zinc complexes [Zn(dbsf)(H2O)2] ( 1 ), [Zn(dbsf)(2,2′‐bpy)(H2O)]·(i‐C3H7OH) ( 2 ) and [Zn(dbsf)(DMF)] ( 3 ) (H2dbsf = 4,4′‐dicarboxybiphenyl sulfone, 2,2′‐bpy = 2,2′‐bipyridine, i‐C3H7OH = iso‐propanol, DMF = N,N‐dimethylformamide) were first obtained and characterized by single crystal X‐ray crystallography. Although the results show that all the complexes 1–3 have one‐dimensional chains formed via coordination bonds, unique three‐dimensional supramolecular structures are formed due to different coordination modes and configuration of the dbsf2? ligand, hydrogen bonds and π–π interactions. Iso‐propanol molecules are in open channels of 2 while larger empty channels are formed in 3 . As compared with emission band of the free H2dbsf ligand, emission peaks of the complexes 1–3 are red‐shifted, and they show blue emission, which originates from enlarging conjugation upon coordination. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

11.
A novel sulfonated aromatic diacid, 3,3′‐disulfonyl‐4,4′‐dicarboxyldiphenylsulfone (DSDCDPS), was successfully synthesized from 4,4′‐dimethyldiphenylsulfone by sulfonation and further oxidation. A series of sulfonated polybenzimidazoles (sPBI‐SS) with various sulfonation degrees was prepared from DSDCDPS, 4,4′‐sulfonyldibenzoic acid and 3,3′‐diaminobenzidine by solution copolycondensation in poly(phosphoric acid). The chemical structure of the resulting sPBI‐SS was confirmed by FTIR and 1H NMR. The DSDCDPS‐based sPBI‐SS with the number‐average molecular weights of 32,000–55,000 were easy to dissolve in polar aprotic solvents such as DMF, DMSO, and DMAc, and could be cast into transparent, tough, and flexible membranes. The membranes presented good thermal stabilities (5% weight loss temperatures higher than 430 °C), and the thermal degradation activation energies of the sulfonic group of sPBI‐SS40 evaluated under N2 by both Ozawa and Kissinger methods were 266.06 and 264.79 kJ/mol, respectively. The membranes also exhibited high storage moduli, glass transition temperatures (above 238 °C) and tensile strengths (~80 MPa), in addition to water uptakes (22.3–25.2%) and low swelling degrees (<14.0%). © 2005 Wiley Periodicals, Inc. J Polym Sci A: Polym Chem 43: 4363–4372, 2005  相似文献   

12.
New N-phenylated aromatic-aliphatic and all aromatic polyamides were prepared by the high-temperature solution polycondensation of 4,4′-dianilinobiphenyl with both aliphatic (methylene chain lengths of 6–11) and aromatic dicarboxylic acid chlorides. All of the aromatic-aliphatic polyamides and the wholly aromatic polyamides exhibited an amorphous nature and good solubility in amide-type and chlorinated hydrocarbon solvents, except for those aromatic polyamides containing p-oriented phenylene or biphenylylene linkages in the backbone; the latter were crystalline and insoluble in organic solvents except m-cresol. The N-phenylated aromatic-aliphatic polyamides and aromatic polyamides had glass transition temperatures in the range of 79–116°C and 207–255°C, respectively, and all the polymers were thermally stable with decomposition temperatures above 400°C in air. © 1998 John Wiley & Sons, Inc. J. Polym. Sci. A Polym. Chem. 36: 2193–2200, 1998  相似文献   

13.
The phase‐transfer catalyzed polycondensation of α,α′‐dichloro‐p‐xylene with 4,4′‐isopropylidenediphenol was carried out using benzylethylammonium chloride in a two‐phase system of an aqueous alkaline solution and benzene at 60 °C under nitrogen atmosphere. The rate of polycondensation was expressed as the combined terms of quaternary onium cation and 4,4′‐isopropylidenediphenolate anion rather than the feed concentration of catalyst and 4,4′‐isopropylidenediphenol. The measured concentrations of hydroxide and chloride anion in the aqueous solution and α,α′‐dichloro‐p‐xylene in the organic phase were used to obtain the reaction rate constant with the integral method, and to analyze the polycondensation mechanism with a cyclic phase‐transfer initiation step in the heterogeneous liquid–liquid system. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 3059–3066, 2000  相似文献   

14.
A metal–organic framework with a novel topology, poly[sesqui(μ2‐4,4′‐bipyridine)bis(dimethylformamide)bis(μ4‐4,4′,4′′‐nitrilotribenzoato)trizinc(II)], [Zn3(C21H12NO6)2(C10H8N2)1.5(C3H7NO)2]n, was obtained by the solvothermal method using 4,4′,4′′‐nitrilotribenzoic acid and 4,4′‐bipyridine (bipy). The structure, determined by single‐crystal X‐ray diffraction analysis, possesses three kinds of crystallographically independent ZnII cations, as well as binuclear Zn2(COO)4(bipy)2 paddle‐wheel clusters, and can be reduced to a novel topology of a (3,3,6)‐connected 3‐nodal net, with the Schläfli symbol {5.62}4{52.6}4{58.87} according to the topological analysis.  相似文献   

15.
The new linear polyesters containing sulfur in the main chain were obtained by melt polycondensation of diphenylmethane-4,4′-di(methylthiopropionic acid) with ethanediol, 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, 1,2-propanediol, 1,3-butanediol, and 2,2′-oxydiethanol. Low-molecular weights, low-softening temperatures and, very good solubility in organic solvents are their characteristics. The structure of all polyesters was determined by elemental analysis, FT-IR and 1H-NMR spectroscopy, and x-ray diffraction analysis. The thermal behavior of these polymers was examined by differential thermal analysis (DTA), thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC). The kinetics of polyesters formation by uncatalyzed melt polycondensation was studied in a model system: diphenylmethane-4,4′-di(methylthiopropionic acid) and 1,4-butanediol or 2,2′-oxydiethanol at 150, 160, and 170°C. Reaction rate constants (k3) and activation parameters (ΔG, ΔH, ΔS) from carboxyl group loss were determined using classical kinetic methods. © 1997 John Wiley & Sons, Inc.  相似文献   

16.
A series of fully aromatic, thermotropic polyesters, derived from 3,4′-dihydroxybenzophenone and various aromatic dicarboxylic acids, was prepared by the high-temperature solution polycondensation method and examined for thermotropic behavior by a variety of experimental techniques. The aromatic dicarboxylic acids used in this study were 2,6-naphthalenedicarboxylic acid, 4,4′-bibenzoic acid, and terephthalic acid. The two homopolymers of 3,4′-DHB with either 2,6-NDA or 4,4′-BBA formed nematic LC phases at 285°C and 255°C and also exhibited isotropization transitions (Ti) at 317°C and 339°C, respectively. The copolymer of 3,4′-DHB with 50% TA and 50% 2,6-NDA also formed a nematic LC phase and had a broader range of LC phase than that of its respective homopolymers. Two other copolymers of 3,4′-DHB, both containing 50% 4,4′-BBA, also formed nematic LC phases at low Tf values. All of the thermotropic polyesters had high thermal stabilities. © 1994 John Wiley & Sons, Inc.  相似文献   

17.
18.
The monomer, trans-2,2′-dihydroxystilbene (DHS), has been prepared by asymmetric photocleavage (254 nm) of coumarin dimer acid derived from coumarin dimer. Four new polyesters are successfully synthesized by interfacial polycondensation of the DHS with adipoyl chloride, azelaoyl chloride, sebacoyl chloride, and dodecanedioyl dichloride, respectively. The reduced viscosities of the polyesters decrease from 0.32 to 0.11 dL/g as the number of methylene unit in diacid chlorides increases from 4 to 10. From DSC investigation, it is found that the polyesters are semi-crystalline polymers with Tm = 39–192°C. Under 350 nm light, photocrosslinking behavior in solution and film-state is investigated by UV spectral change with irradiation time (350 nm). The photoreactive stilbene chromophores in the main chain dimerize to form cyclobutane derivatives, and lead to crosslinking of the polyesters. Photosensitivity in the film state has also been evaluated by their characteristic curves. Polyester from dodecanedioyl dichloride ( 5d ) exhibits the highest initial reaction rate and ultimate crosslinking ratio. © 1995 John Wiley & Sons, Inc.  相似文献   

19.
To prepare thermally stable and high‐performance polymeric films, new solvent‐soluble aromatic polyamides with a carbamoyl pendant group, namely poly(4,4′‐diamino‐3′‐carbamoylbenzanilide terephthalamide) (p‐PDCBTA) and poly(4,4′‐diamino‐3′‐carbamoylbenzanilide isophthalamide) (m‐PDCBTA), were synthesized. The polymers were cyclized at around 200 to 350 °C to form quinazolone and benzoxazinone units along the polymer backbone. The decomposition onset temperatures of the cyclized m‐ and p‐PDCBTAs were 457 and 524 °C, respectively, lower than that of poly(p‐phenylene terephthalamide) (566 °C). For the p‐PDCBTA film drawn by 40% and heat‐treated, the tensile strength and Young's modulus were 421 MPa and 16.4 GPa, respectively. The film cyclized at 350 °C showed a storage modulus (E′) of 1 × 1011 dyne/cm2 (10 GPa) over the temperature range of room temperature to 400 °C. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 775–780, 2000  相似文献   

20.
A new cardo diacid chloride, 1,1‐bis‐[4‐(4‐chlorocarboxyphenoxy)phenyl]‐4‐tert‐butylcyclohexane ( 4 ), was synthesized from 1,1‐bis‐[4‐(4‐carboxyphenoxy)phenyl]‐4‐tert‐butylcyclohexane in refluxing thionyl chloride. Subsequently, various new polyesters were prepared from 4 with various bisphenols by solution polycondensation in nitrobenzene using pyridine as a hydrogen chloride quencher at 150 °C. These polyesters were produced with inherent viscosities of 0.32–0.50 dL · g?1. Most of these polyesters exhibited excellent solubility in a variety of solvents such as N,N‐dimethylformamide, tetrahydrofuran, tetrachloroethane, dimethyl sulfoxide, N,N‐dimethylacetamide, N‐methyl‐2‐pyrrolidinone, m‐cresol, o‐chlorophenol, and chloroform. These polymers showed glass‐transition temperatures (Tg's) between 144 and 197 °C. The polymer containing the adamantane group exhibited the highest Tg value. The 10% weight loss temperatures of the polyesters, measured by thermogravimetric analysis, were found to be in the range of 426–451 °C in nitrogen. These cardo polyesters exhibited higher Tg's and better solubility than bisphenol A‐based polyesters. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 2951–2956, 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号