首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Miscibility in poly(vinyl chloride)/epoxidized natural rubber (PVC/ENR) blends was further investigated by means of dynamic mechanical analysis. The single glass transition temperature shown by the blends supported earlier observations of miscibility Furthermore, observed synergism in storage modulus has again reaffirmed the miscibility of these blends. A critical examination of the damping peaks at various compositions again revealed the microheterogeneous nature of the blends. Some theories relating glass transition temperature and modulus with miscibility were also used to examine miscibility. Agreement of the results with theories proposed by Gordon—Taylor and Kleiner has provided a further insight into the miscible nature of PVC/ENR blends.  相似文献   

2.
Epoxidized natural rubber is a recently commercialized modified form of natural rubber. This paper is part of our continuing effort to study the responses of this new material to melt mixing and other shaping processes. The Shimadzu capillary rheometer was used to evaluate the composition dependence of miscibility of polyvinyl chloride/epoxidized natural rubber blends (PVC/ENR blends). The rheometer was also used to evaluate the effect of compounding parameters on the rheological properties of the blends. The results confirmed PVC/ENR blends as miscible systems that show a synergism in apparent shear viscosity highlighted by the positive deviation from the logarithmic additivity rule. These results based on capillary rheometry are also in very good agreement with our earlier attempt to predict optimum mixing from torque rheometry by using the Brabender Plastogram as an indicator.  相似文献   

3.
Miscible blends from plasticized poly(vinyl chloride), and epoxidized natural rubber having 50 mol% epoxidation level were prepared in a Brabender Plasticorder by the melt-mixing technique. Changes in Brabender torque and temperature, density, dynamic mechanical properties, and differential scanning calorimetry of the samples were examined as a function of blend composition. The plasticized poly(vinyl chloride)/epoxidized natural rubber blends behaved as a compatible system at all composition ranges as evident from their single glass-rubber transition temperature (Tg) obtained from dynamic mechanical analysis as well as from differential scanning calorimetry. Profound changes in the nature of the glass-rubber transition were noted with respect to blend composition. The Tg-width values of blends lie between those of plasticized poly(vinyl chloride) and epoxidized natural rubber.  相似文献   

4.
Miscibility in poly(vinyl chloride)/epoxidized natural rubber (PVC/ENR) blends was studied by examining evidence from tensile, impact, and physical properties. The observation of synergism in tensile strength, percent elongation at break, hardness, and relative density has reaffirmed PVC/ENR blends as miscible systems. Studies of impact properties, however, revealed that the blends are microheterogeneous in nature. This could be attributed to the large sizes of polymer molecules involved and the microgel content of ENR-50. Results from Fourier transform infrared spectroscopy (FTIR) revealed that hydrogen bonding is extensively involved in PVC/ENR systems. This evidence unveiled the exact nature of the specific interactions responsible for miscibility and hence the enhanced mechanical properties of PVC/ENR blends.  相似文献   

5.
Blends of polyvinyl chloride/epoxidized natural rubber (PVC/ENR) blends were studied. Their rheological properties were studied with a Brabrender Plasticorder. It was found that the rheological properties of any PVC/ENR blends are governed by their blending conditions. To ensure homogenous PVC/ENR blends, adequate and suitable blending conditions must be utilized. PVC thermoplastics phases enhances rigidity while ENR rubbery phases imparts flexibility and processability to the blends. With premixing, Ba/Cd/Zn-based PVC stabilizer is effective in stabilizing the PVC/ENR blends. Their properties are further enhanced by the addition of curatives.  相似文献   

6.
Blends from poly(vinyl chloride) (PVC) and epoxidized natural rubber (ENR) were prepared in a Brabender plasticorder by the melt blending technique. The melt flow behavior of these blends with respect to blend ratio and temperature has been examined using a melt flow indexer and capillary rheometer. ENR decreases the Brabender torque, increases the melt flow index (MFI), and decreases the melt viscosity of PVC in the blends. Arrhenius plots were used to study the effect of temperature on melt flow index (MFI) and viscosity. Moreover, the flow behavior index (n′) obtained from capillary rheometer data was found to be dependent on temperature and blend ratio.  相似文献   

7.
—Contact angle studies of miscible poly(vinyl chloride)/epoxidized natural rubber (PVC/ ENR) blends were carried out in air using water and methylene iodide. The solid surface free energy was calculated from harmonic mean equations. Blending of PVC and ENR decreased their contact angle or increased their solid surface free energy due to the improved chain mobility, and the accumulation of excess polar sites at the surface through conformational alterations resulting from the specific interaction of PVC and ENR. The work of adhesion, interfacial free energy, spreading coefficient, and Girifalco-Good's interaction parameter changed markedly with the blend composition. In blends, PVC and ENR improved hydrophilicity, and wettability with polar and non-polar liquids. The presence of a plasticizer in PVC, in general, further improved the wettability and hydrophilicity in blends.  相似文献   

8.
An attempt to resolve the difficulties normally faced in preparing PVC-dominant PVC/ENR blends with the Brabender plasticorder is discussed. As expected, it was found that the mechanical properties of PVC/ENR blends are greatly influenced by the mixing parameters, which are further reinforced with evidence from both dynamic mechanical analysis (DMA) and morphological studies. Both techniques showed the attainment of compatible 50/50/PVC/ENR blends, the former a single glass transition temperature (Tg) and the latter a single-phase system, albeit their inherent properties are dependent on the blending parameters. By utilizing the correlation between mixing temperature and rotor speed derived, good PVC/ENR blends can be easily procured. © 1993 John Wiley & Sons, Inc.  相似文献   

9.
The irradiation crosslinking of 50/50 poly(vinyl chloride)/epoxidized natural rubber blend was investigated in the presence of 1–5 parts per hundred resin (phr) tribasic lead sulfate (TBLS) with blends prepared at various mixing temperatures. The blends were irradiated using a 3.0 MeV electron accelerator at 0, 100 and 200 kGy irradiation doses. Changes in tensile strength, elongation at break and stress‐strain curves of the blends with the increase TBLS content and blending temperatures were observed before and after irradiation. The results on the tensile properties revealed the inhibition of the irradiation‐induced crosslinking by the TBLS although it stabilizes the blend against thermal and irradiation‐induced degradation. The Fourier transform infrared spectroscopy studies further confirmed these observations. Control on the thermal degradation of the blend during blending found to be crucial in achieving maximum enhancement in blend properties upon irradiation. Evidence from dynamic mechanical analysis was also used to support this contention. Addition of 2 phr TBLS and blending at 150 °C found to be adequate in order to achieve the best enhancement in blend properties through irradiation‐induced crosslinking. © 2001 Society of Chemical Industry  相似文献   

10.
The effect of di-2-ethylhexyl phthalate (DOP) plasticizer on the degradation behaviour of 50/50 poly(vinyl chloride)/epoxidized natural rubber (PVC/ENR) blend was studied by long-term exposure to ambient conditions (27–30°C) in the laboratory. While the unplasticized blend showed obvious changes in physical properties such as hardening, loss of elasticity and embrittlement, the plasticized blend retained its properties. Thermo-oxidative ageing studies were carried out by evaluating the mechanical properties before and after ageing in an air oven at 80°C for 168 h. The relatively rapid degradation of PVC/ENR blend has been attributed to the high concentration of epoxy groups and the occurrence of ring-opening reactions to form ether crosslinks. It was found that the plasticizer confers adequate stabilization upon the addition of a certain threshold amount. The optimum amount of plasticizer required to adequately stabilize the blend is 20 phr. Above this there is a tendency for plasticizer migration to occur. The use of an antioxidant in conjunction with the plasticizer further stabilizes the blend. The general trend is of decrease in mechanical and physical properties with increase in DOP concentration. In addition, ease of processing also increases as indicated by the torque maxima and minima obtained from the Brabender plastograms.  相似文献   

11.
The properties of poly(vinyl chlorlde)/ehlorinated poly(vinyl chloride) (61.6 percent C1) blends, prepared by melt and solution blending, were measured by various tests. Based on the chlorinated poly(vinyl chloride) (CPVC) composition, percent chlorine, and mole percent CC12 groups, these blends were expected to show intermediate properties between miscible and immiscible systems. Indicative of miscible behavior were the single glass transition temperatures over the entire composition range for both melt and solution blended mixtures. A single phase was also indicated by transmission electron microscopy. However, the yield stress showed a minimum value less than either of the pure components in the 50 to 75 percent CPVC range, which is characteristic of two-phased systems. Specific volume, glass transition temperature, and heat distortion temperature were linear with binary composition. The storage modulus showed a small maximum, suggesting a weak interaction between the two miscible polymers. Heats of melting for the residual PVC crystallinity were also less than expected from linear additivity. At 160°C and 210°C, the logarithm of the complex viscosity was essentially linear with volume fraction of CPVC, except for a very slight decrease in the 50 to 75 percent CPVC range, which may have been a result of lower crystallinity. At 140°C, the complex viscosity of the CPVC was less than that of PVC owing to the higher crystallinity of the latter. The viscosities were similar at 160°C, but at 210°C, where most of the crystallites had melted, the complex viscosity of the CPVC was higher because of its higher glass transition temperature.  相似文献   

12.
The effect of adding poly(vinyl chloride) (PVC) and coke filler on the rheological behavior and thermal properties of a coal tar pitch was investigated with a view to developing an appropriate viscoelastic binder for the injection molding of graphite components. Dynamic mechanical analysis revealed that the pitch formed compatible blends with PVC featuring a single glass transition temperature (Tg) intermediate to the two parent Tg’s. Adding PVC to the pitch increased melt viscosity substantially and resulted in strong shear thinning behavior at high PVC addition levels. Adding coke powder as filler increased the melt viscosity even further and enhanced shear thinning trends. Pyrolysis conducted in a nitrogen atmosphere revealed interactions between the PVC and pitch degradation pathways: the blends underwent significant thermal decomposition at lower temperatures but showed enhanced carbon yields at high temperatures. Pyrolytic carbon yield at 1000 °C was further improved by a heat treatment (temperature scanned to 400 °C) in air or oxygen. However, carbon yield decreased with addition of PVC. In addition, the degree of ordering attained following a 1 h heat treatment at 2400 °C also decreased with increasing PVC content.  相似文献   

13.
A study on the melt elasticity behavior and extrudate characteristics of melts of rigid poly(vinyl chloride), PVC, and rigid poly(vinyl chloride)/epoxidized natural rubber (ENR) miscible blends were conducted. Extrusion studies were carried out in a capillary rheometer and examinations of the surface characteristics of the extrudate were made by taking photomicrographs in a scanning electron microscope. The anomalous behavior in the die swell ratio of rigid PVC arising from the particle agglomerates continued in its blends up to 50 wt% composition of ENR. Temperature independence for high ENR blends was noted for the principal normal stress difference and elastic shear modulus, when shear stress was held constant. Recoverable shear strain and die swell ratio behaved identically in terms of blend composition and processing temperature. Factors which control the extrudate distortion and melt fracture of the melts of rigid PVC/ENR systems were fusion of particle agglomerates and strength of melts. Diamond cavitations were typical of the extrudate surface of PVC melts as those of the fracture surface of the tensile failure of PVC. Conditions to obtain a smooth extrudate surface of rigid PVC melts in blends with ENR have been found to be the low ENR content, low shear rate, or stress and high processing temperature.  相似文献   

14.
The effects of an epoxidized plasticizer on the mechanical properties and thermo-oxidative ageing behaviour of poly(vinyl chloride)/epoxidized natural rubber thermoplastic elastomers (TPEs) were investigated. Aged and unaged blends were characterized by FTIR, tensile properties, tear strength, hardness and dynamic mechanical analysis (DMA). The properties of the epoxidized soya oil (ESO) plasticized TPEs were compared with those of the di-2-ethylhexylphthalate (DOP) plasticized counterparts. The presence of epoxide groups in ESO has been shown to produce two conflicting effects. On the one hand, the presence of excessive epoxide groups has resulted in poor ageing behaviour. On the other hand, it has resulted in a good interaction and compatibility with PVC/ENR. It was found that the tensile strength of the ESO plasticized blends were comparable with the DOP plasticized ones, but the elongation at break (EB) of the ESO blends fell short of that of the DOP blends. Also the retention of both tensile properties for the ESO blends was poorer than for DOP blends. Hardening and embrittlement also occurred in the ESO blends. Despite these weaknesses, ESO could be an ideal plasticizer for the PVC/ENR system as indicated by plasticizer permanence and the greater efficiency of plasticization. © 1998 SCI.  相似文献   

15.
Electron‐beam initiated crosslinking of poly(vinyl chloride)/epoxidized natural rubber blends, which contained trimethylolpropane triacrylate (TMPTA), was carried out over a range of irradiation doses (20–200 kGy) and concentrations of TMPTA (1–5 phr). The gel content increased with the irradiation dose and the TMPTA level, although the increase was marginal at higher doses and higher TMPTA levels. Blends containing 3–4 phr TMPTA achieved optimum crosslinking, which in effect caused the maximum tensile strength (TS) at a dose of 70 kGy. A further addition of TMPTA caused a decline in the TS above 40 kGy that was due to embrittlement, which is a consequence of excessive crosslinking and the breakdown of the network structure. The possible formation of a more open network as a result of the breakdown of the network structure was further confirmed by the modulus results. Dynamic mechanical analysis (tan δ curve) and scanning electron microscopy studies on samples irradiated at 0 and 200 kGy were undertaken in order to gain further evidence on the irradiation‐induced crosslinking. The plasticizing effect of TMPTA prior to irradiation and the formation of microgels upon irradiation were also discussed. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 1926–1935, 2001  相似文献   

16.
The thermal properties (thermal conductivity, thermal diffusivity, and specific heat capacity) of nitrile rubber (NBR)/poly(vinyl chloride) (PVC) blends were measured in the temperature range of 300–425 K. The incorporation of graphite into the NBR/PVC (30/70) matrix improved its thermal properties. Moreover, these properties slightly changed with the temperature. The thermal conductivity values of the prepared samples were compared with values modeled according to the Maxwell–Eucken, Cheng–Vachon, Lewis–Nielsen, geometric mean, and Agari–Uno models. The Agari–Uno model best predicted the effective thermal conductivity for the whole range of blend ratios and for the whole range of graphite contents in NBR/PVC (30/70)/graphite composites. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

17.
Dynamically vulcanized poly(vinyl chloride)/epoxidized natural rubber (PVC/ENR) thermoplastic elastomers (TPEs) were prepared with a Brabender plasticorder coupled with a mixing attachment by melt mixing. The blends were prepared at 150°C at a rotor speed of 50 rpm. Curatives concentration was steadily increased from 0 to 1 phr in order to study the vulcanization effect on the plasticized blend. The effectiveness of the dynamic vulcanization was indicated by the Brabender plastograms. The properties investigated include mass swell, tensile strength, elongation at break, modulus at 100% elongation (M100), tear strength, and hardness. The PVC/ENR samples were exposed to two types of environments, namely, air and oil under otherwise identical conditions. The effect of oil and thermooxidative aging on the mechanical properties were characterized at room temperature and 100°C. It was found that at ambient temperature the samples immersed in oil possessed similar properties to those that were exposed to air. Significant enhancement in mechanical properties were observed for both environments at 100°C. This has been attributed to the increase in crosslink density which was manifested by a steady reduction in percent mass swell with increased sulfur loading. The excellent mechanical behavior of the PVC/ENR TPEs even after immersing the samples in oil at 100°C has provided a good indication of the oil resistance of the materials. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 69: 1357–1366, 1998  相似文献   

18.
Being polar and compatible with poly(vinyl chloride), epoxidized natural rubber (ENR) is similar in behaviour to acrylonitrile butadiene rubber (NBR). To assess the extent of this similarity, the mechanical properties of 50/50 blends of PVC with these two rubbers were compared. Their response to thermo-oxidative ageing in the presence of an antioxidant and a base was also investigated by ageing the blends at 100°C for 7 days. Studies involving mechanical properties and FTIR were used to evaluate the extent of thermal degradation. The results revealed that blends of ENR show mechanical properties which are as good as, and in some instances better than, those of the NBR blends. However, the ENR blends with PVC are very prone to oxidative ageing. This might be attributed to the susceptibility of the oxirane group to ring-opening reactions, particularly in the presence of PVC, which yields HCl as it degrades. The amine-type antioxidant 2,24-trimethyl-1,2-dihydroquinoline (TMQ) improved the oxidative stability of both blends. This was more significant in the ENR blend, which in some cases attained stability comparable with that of NBR. The addition of a base, calcium stearate [Ca(St)2], did not show any influence in the PVC/ENR blend, even though it was expected to curb acid-catalysed degradation. Ca(St)2, however, improved the oxidative stability of the PVC/NBR blend. The combination of optimum amounts of TMQ and Ca(St)2 effectively improved the tensile strength of both unaged blends, without appreciable adverse effect on elongation at break. This combination also imparted stability better than that of TMQ alone.  相似文献   

19.
The blends of epoxidized natural rubber (50 mol %) (ENR) and poly(ethylene-co-acrylic acid) (PEA) (6 wt %) are demonstrated to be partially miscible up to 50% by weight of PEA and completely miscible beyond this proportion. The miscibility has been confirmed by a DSC study which exhibits a single second-order transition (Tg) for the 30 : 70 and 50 : 50 (ENR : PEA) blends. For the 70 : 30 (ENR : PEA) blend, the Tg's shift toward an intermediate value but do not merge to form a single Tg, making the blend partially miscible. The miscibility has been assigned to the esterification reaction between – OH groups formed in situ during melt blending of ENR and – COOH groups of PEA. The occurrence of such reactions have been confirmed by UV and IR spectroscopic studies. The existence of a single phase of the blends beyond 50 wt % of PEA has been shown by SEM studies. © 1995 John Wiley & Sons, Inc.  相似文献   

20.
The objectives of this study were to determine the compatibility of various blends of commercially available rigid, unplasticized, impact-modified polyvinyl chloride (UPVC) and methyl methacrylate (MMA) copolymers. The effects of acrylic type and loading level on compatibility were investigated. The resultant alloys or blends were subsequently evaluated for compatibility through examination of the following properties: processability, rigidity, strength, impact resistance, heat resistance, clarity, and ultra-violet aging. This report limits itself to the discussion of the thermal-mechanical properties, specifically dynamic mechanical properties in torsion (ASTM D 5279).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号