首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
On Complex Fluorides of Divalent Palladium For the first time single crystals of the new compounds RbPdPdF5, KPdPdF5, and K2CsPdF5 have been obtained. Orange brown RbPdPdF5 crystallizes orthorhombic, space group Imma–D2h28 (No. 74) with a = 633.6(1) pm, b = 765.5.(1) pm, c = 1067.5(1) pm and Z = 4 and is isotypic with CsPdPdF5 [1]. Structure related KPdPdF5 (also orange brown) crystallizes orthorhombic too, but in space group Pnma–D2h16 (No. 62) with a 614.12(9) pm, b = 748.7(1) pm, c = 1065.0(2) pm and Z = 4. K2CsPdF5, light yellow, crystallizes tetragonal with a = 736.3(1) pm, c = 628.0(1) pm, Z = 2, and is isotypic with Rb2CsPdF5 (space group P4/mbm? D4h5 Nr. 127), an ordered structure variant of the Rb3PdF5-Type [1].  相似文献   

2.
Preparation of Crystal Structure of K6[Al2O6] and Rb6[Al2O6] Colourless single crystals of K6[Al2O6] have been prepared from intimate mixtures of KAlO2 and K2O (550°C, 90 d). The structure determination from four-circle diffractometer data (MoKα , 742 Io(hkl), R = 2.2%, Rw = 2.1%) confirms the space group C2/m with Z = 2; a = 698.25 pm, b = 1 103.54 pm, c = 646.49 pm, β = 102.49°. Colourless single crystals of hitherto unknown Rb6[Al2O6] have been prepared from intimate mixtures of RbAlO2 and Rb2O (520°C, 120 d). The structure determination from four-circle diffractometer data (MoKα , 1 240 Io(hkl)) results in the residual values R = 7.2%, Rw = 4.9%; space group C2/m; a = 725.92 pm, b = 1 143.33 pm, c = 678.06 pm, β = 104.05°; Z = 2. K6[Al2O6] and Rb6[Al2O6] are isostructural with K6[Fe2O6]. A characteristic structure unit is the anion [Al2O6]6? consisting of two edge-sharing [AlO4] tetrahedra. Effective Coordination Numbers (ECoN), Mean Fictive Ionic Radii (MEFIR), the Madelung Part of Lattice Energy (MAPLE) and the Charge Distribution (CHARDI) are calculated and discussed.  相似文献   

3.
Single Crystal Investigations on LiMF6 (M = Rh, Ir), Li2RhF6, and K2IrF6 LiRhF6, LiIrF6, Li2RhF6, and K2IrF6 were obtained again, but for the first time investigated by single crystal X‐ray methods. Rubyred LiRhF6 and yellow LiIrF6 crystallize isostructural in the trigonal space group R3 – C23i (Nr. 148) with the lattice parameters LiRhF6: a = 502.018(7) pm, c = 1355.88(3) pm, Z = 3 and d(Rh–F) = 185.5(1) pm; LiIrF6: a = 506.148(4) pm, c = 1362.60(2) pm, Z = 3, d(Ir–F) = 187.5(3) pm (LiSbF6‐Typ). Yellow Li2RhF6 crystallizes tetragonal in the space group P42/mnm – D144h (Nr. 136) with a = 463.880(8) pm, c = 905.57(2) pm, Z = 2 and d(Rh–F) = 190.3(4)–191.4(3) pm (Trirutil‐Typ). Yellow K2IrF6 crystallizes trigonal in the space group P3m1 – D33d (Nr. 164) with a = 578.88(7) pm, c = 465.06(5) pm, Z = 1 and d(Ir–F) = 194.0(6) pm, isotypic with K2GeF6.  相似文献   

4.
On Complex Fluorides with Cu2+ and Pd2+: MPtF6 (M ? Pd, Cu) and RbCuPdF5 For the first time single crystals of PdPtF6 (green), trigonal-rhomboedric, a = 503.8, c = 1431.6 pm, spcgr. R3 ? C (No. 148), Z = 3, CuPtF6 (orange), triclinic, a = 495.2, b = 498.5, c = 962.4 pm, α = 89.98, β = 104.23, γ = 120.35°, spcgr. P1 ? C (No. 2), Z = 2 and RbCuPdF5 (orange brown, in connection with investigations on MIPd2F5 [1]), orthorhombic, a = 626.9, b = 719.9, c = 1076.3 pm, spcgr. Pnma? D (No. 62), Z = 4, four circle diffractometer data, have been obtained.  相似文献   

5.
New Oxides with the “Butterfly-Motive”: Rb6[Fe2O5] and K6[Fe2O5] Rb6[Fe2O5] and K6[Fe2O5] were obtained for the first time by annealing intimate mixtures of “Rb6CdO4” with CdO (molar ratio 1 : 1.1) and KO0.48 with CdO (molar ratio 5.9 : 1) respectively in closed Fe-cylinders. Determination and refinement of the crystalstructure confirms the space group C2/m (four-circle-diffractometer data). Rb6[Fe2O5]: Ag Kα , 720 out of 1220 Io(hkl), R = 9.68%, Rw = 6.09%; a = 718.9pm, b = 1183.1 pm, c = 695.4pm, β = 95.05°, Z = 2; K6[Fe2O5]: MoKα , 1214 Out of 12141o(hkl), R = 3.20070, Rw = 2.48%, a = 691.21 pm, b = 1142.78pm, c = 665.50pm, β = 93.82°, Z = 2. The binuclear unit [O2FeOFeO2]6? already known to be planar with oxoferrates(II) now was observed to be angular here and closely related to Na6[Be2O5].  相似文献   

6.
The Antimonide Triantimonidometallates(III) Cs6K3Sb[AlSb3] and Cs6K3Sb[GaSb3] The novel compounds Cs6K3Sb[AlSb3] and Cs6K3Sb[GaSb3] are formed from stoichiometric mixtures of Cs, AlSb (GaSb) and KSb in sealed niobium ampoules at 950 K. The hexagonal structures are especially characterized by one-dimensional rod packings 1∞[Cs6K3Sb] which are formed from columns of condensed (Cs6K6/2) icosahedra. The icosahedra are centered by Sb3-? anions. The trigonal planar anions [AlSb3]6-? and [GaSb3]6-? are embedded between the icosahedra columns, and they are coordinated by alkali metal atoms. The FIR spectra were assigned to the vibrations of the [MSb3]6-? anions, with respect to the 6 m2-D3h symmetry. (P63/mmc, No. 194; a = 1101.7 and 1097.2 pm; c = 1158.9 and 1150.1 pm; Z = 2; Single crystal data: 574 and 546 reflections; R = 0.073 and 0.029. Distances:d(Al? Sb) = 265.4 pm; d(Ga? Sb) = 265.1 pm; d(Sb? Cs) = 401.6–423.0 pm; d(Sb? K) = 358.6–367.3 pm).  相似文献   

7.
Crystal Structure of the Mixed-Valence Iron Fluorid Hydrate Fe3F8 · 2 H2O Newly prepared was the red, monoclinic compound Fe3F8 · 2 H2O, single crystals of which could be obtained under hydrothermal high pressure conditions (space group C2/m with a = 761.2(3), b = 750.0(1), c = 746.9(3) pm, β = 118.38(2)° and Z = 2). The X-ray structure determination (RG = 0.0192 and 635 reflexions) yielded a framework structure, in which layers of octahedra 2[FeIIIF6/2] are connected via corners of [FeIIF4/2(H2O)2]-octahedra. The average distances in the nearly ideal octahedra are FeIII? F = 193.0, FeII? F = 208.1 and FeII? OH2 = 211.5 pm.  相似文献   

8.
Single crystals of CsPd2F5 (orange-brown, ImmaD282h, No. 74; Z = 2; a = 6.533, b = 7.862, c = 10.79 ā)have been obtained (instead of ‘CsPdF3’) by heating mixtures of CsF and PdF2 (ratio 1:1) in sealed gold tubes (under dry Ar) up to t ≈ 600°C (20–3O d). The structure is related closely to the CsAgFeF6-type of structure [1], but, because of the ‘absence’ of one F?, one half of the Pd2+-ions is coordinated planar quadratically, the other half octehedrally. From Guinier data are isotypic MeIPd2F5 (MeI  K, Rb, Tl), brown and CsMeIIPdF5 (MeII  Zn, Cd, Ni, Co, Mg), brown or yellow.Under similar conditions single crystals of Rb3PdF5 (yellow, P4/mbm-D54h, No. 127; Z = 2, a = 7.467, c = 6.497 ā) have been obtained (instead of ‘Rb2PdF4’) by heating mixtures of RbF and PdF2 (ratio 2:1) in sealed gold tubes (under dry Ar) up to t ≈ 560°C (20–30 d). The coordinationnumber of Pd2+ is C.N. = 4 (planar quadratic). Isotypic are (single crystal data) Cs3PdF5, Rb2CsPdF5 (with ordered distribution of Rb, Cs) and K3PdF5, all yellow.  相似文献   

9.
Synthesis and Structure of the Phosphorus-bridged Transition Metal Complexes [Fe2(CO)6(PR)6] (R = tBu, iPr), [Fe2(CO)4(PiPr)6], [Fe2(CO)3Cl2(PtBu)5], [Co4(CO)10(PiPr)3], [Ni5(CO)10(PiPr)6], and [Ir4(C8H12)4Cl2(PPh)4] (PtBu)3 and (PiPr)3 react with [Fe2(CO)9] to form the dinuclear complexes [Fe2(CO)6(PR)6] (R = tBu: 1 ; iPr: 2 ). 2 is also formed besides [Fe2(CO)4(PiPr)6] ( 3 ) in the reaction of [Fe(CO)5] with (PiPr)3. When PiPr(PtBu)2 and PiPrCl2 are allowed to react with [Fe2(CO)9] it is possible to isolate [Fe2(CO)3Cl2(PtBu)5] ( 4 ). The reactions of (PiPr)3 with [Co2(CO)8] and [Ni(CO)4] lead to the tetra- and pentanuclear clusters [Co4(CO)10(PiPr)3] ( 5 ), [Ni4(CO)10(PiPr)6] [2] and [Ni5(CO)10(PiPr)6] ( 6 ). Finally the reaction of [Ir(C8H12)Cl]2 with K2(PPh)4 leads to the complex [Ir4(C8H12)4Cl2(PPh)4] ( 7 ). The structures of 1–7 were obtained by X-ray single crystal structure analysis (1: space group P21/c (Nr. 14), Z = 8, a = 1 758.8(16) pm, b = 3 625.6(18) pm, c = 1 202.7(7) pm, β = 90.07(3)°; 2 : space group P1 (Nr. 2), Z = 1, a = 880.0(2) pm, b = 932.3(3) pm, c = 1 073.7(2) pm, α = 79.07(2)°, β = 86.93(2)°, γ = 72.23(2)°; 3 : space group Pbca (Nr. 61), Z = 8, a = 952.6(8) pm, b = 1 787.6(12) pm, c = 3 697.2(30) pm; 4 : space group P21/n (Nr. 14), Z = 4, a = 968.0(4) pm, b = 3 362.5(15) pm, c = 1 051.6(3) pm, β = 109.71(2)°; 5 : space group P21/n (Nr. 14), Z = 4, a = 1 040.7(5) pm, b = 1 686.0(5) pm, c = 1 567.7(9) pm, β = 93.88(4)°; 6 : space group Pbca (Nr. 61), Z = 8, a = 1 904.1(8) pm, b = 1 959.9(8) pm, c = 2 309.7(9) pm. 7 : space group P1 (Nr. 2), Z = 2, a = 1 374.4(7) pm, b = 1 476.0(8) pm, c = 1 653.2(9) pm, α = 83.87(4)°, β = 88.76(4)°, γ = 88.28(4)°).  相似文献   

10.
Three Alkali‐Metal Erbium Thiophosphates: From the Layered Structure of KEr[P2S7] to the Three‐Dimensional Cross‐Linkage in NaEr[P2S6] and Cs3Er5[PS4]6 The three alkali‐metal erbium thiophosphates NaEr[P2S6], KEr[P2S7], and Cs3Er5[PS4] show a small selection of the broad variety of thiophosphate units: from ortho‐thiophosphate [PS4]3? and pyro‐thiophosphate [S3P–S–PS3]4? with phosphorus in the oxidation state +V to the [S3P–PS3]3? anion with a phosphorus‐phosphorus bond (d(P–P) = 221 pm) and tetravalent phosphorus. In spite of all differences, a whole string of structural communities can be shown, in particular for coordination and three‐dimensional linkage as well as for the phosphorus‐sulfur distances (d(P–S) = 200 – 213 pm). So all three compounds exhibit eightfold coordinated Er3+ cations and comparably high‐coordinated alkali‐metal cations (CN(Na+) = 8, CN(K+) = 9+1, and CN(Cs+) ≈ 10). NaEr[P2S6] crystallizes triclinically ( ; a = 685.72(5), b = 707.86(5), c = 910.98(7) pm, α = 87.423(4), β = 87.635(4), γ = 88.157(4)°; Z = 2) in the shape of rods, as well as monoclinic KEr[P2S7] (P21/c; a = 950.48(7), b = 1223.06(9), c = 894.21(6) pm, β = 90.132(4)°; Z = 4). The crystal structure of Cs3Er5[PS4] can also be described monoclinically (C2/c; a = 1597.74(11), b = 1295.03(9), c = 2065.26(15) pm, β = 103.278(4)°; Z = 4), but it emerges as irregular bricks. All crystals show the common pale pink colour typical for transparent erbium(III) compounds.  相似文献   

11.
Oxometallates of a new Type: On Ba3NaNbO6 and Ba3NaTaO6 For the first time in form of colourless, transparent single crystals of Ba3NaNbO6 [annealed mixtures of BaO, Na2O and Nb2O5, Ba : Na : Nb = 3.3 : 1.1 : 1, Ni-cylinder, 1100°C, 3d] as well as Ba3NaTaO6 [annealed mixtures of BaO, Na2O and Ta2O5, Ba : Na : Ta = 3.3 : 1.1 : 1, Ni-cylinder, 1100°C, 3d] have been prepared. The crystal structure was solved by fourcycle-diffractometer data [Ba3NaNbO6: Mo? Kα , 356 out 356 I0 (hkl), space group R3 c with a = 1026.6(1)pm, c = 1195.3(2)pm (Guinier-Simon powder data), Z = 6, R = 2.4%, Rw = 2.0% and Ba3NaTaO6: Ag? Kα , 498 out of 498 I0 (hkl), space group R3 c with a = 1027.6(1)pm, c = 1196.0(2)pm (Guinier-Simon powder data), Z = 6, R = 4.9%, Rw = 4.4%], parameters see text. The Ba3M part of structure (M = Nb, Ta) corresponds to a slightly (hexagonal) deformed Nb3Al arrangement with Na inserted along [001] between adjacent Mv, which are nearly perfectly octahedrally surrounded by 6 O. The structural relations are deduced by Schlegel Diagrams. The Madelung Part of Lattice Energy, MAPLE, and Effective Coordination Numbers, ECoN, the latter derived from Mean Effective Ionic Radii, MEFIR, as well as Charge Distribution, CHARDI, are calculated.  相似文献   

12.
New Phosphorus-bridged Transition Metal Complexes The Crystal Structures of [Co4(CO)10(PiPr)2], [Fe3(CO)9(PtBu)(PPh)], [Cp3Fe3(CO)2(PPtBu)· (PtBu)], [(NiPPh3)2(PiPr)6], [(NiPPh3)Ni{(PtBu)3}2], and [Ni8(PtBu)6(PPh3)2] By the reaction of cyclophosphines with transition metal carbonyl-derivatives polynuclear complexes are built, in which the PR-ligands (R = organic group) are bonded in different ways to the metal. Depending on the reaction conditions the following compounds can be characterized: [Co4(CO)10 · (PiPr)2] ( 2 ), [Fe3(CO)9(PtBu)(PPh)] ( 3 ), [Cp3Fe3(CO)2(PPtBu) · (PtBu)] ( 4 ), [(NiPPh3)2(PiPr)6] ( 5 ), [(NiPPh3)Ni{(PtBu)3}2] ( 6 ) and [Ni8(PtBu)6(PPh3)2] ( 7 ). The structures of 2–7 were obtained by X-ray single crystal structure analysis ( 2 : space group Pccn (No. 56), Z = 4, a = 1001,4(2) pm, b = 1375,1(3) pm, c = 1675,5(3) pm; 3 : space group P21 (No. 4), Z = 2, a = 914,3(4) pm, b = 1268,7(4) pm, c = 1028,2(5) pm, β = 101,73(2)°; 4 : space group P1 (No. 2), Z = 2, a = 946,0(5) pm, b = 1074,4(8) pm, c = 1477,7(1,0) pm, α = 107,63(5)°, β = 94,66(5)°, γ = 111,04(5)°; 5 : space group P1 (No. 2), Z = 2, a = 1213,6(2) pm, b = 1275,0(2) pm, c = 2038,8(4) pm, α = 92,810(10)°, β = 102,75(2)°, γ = 93,380(10)°; 6 : space group P1 (No. 2), Z = 2, a = 1157,5(5) pm, b = 1371,9(6) pm, c = 1827,6(10) pm; α = 69,68(3)°, β = 80,79(3)°, γ = 69,36(3)°; 7 : space group P3 (No. 147), Z = 1, a = 1114,1(2) pm, b = 1114,1(2) pm, c = 1709,4(3) pm).  相似文献   

13.
A New Lead Strontium Ferrate(III): The Crystal Structure of the Phase Pb4Sr2Fe6O15 At orthorhombic single crystals of Pb4Sr2Fe6O15 (a = 568.73(8), b = 392.03(4), c = 2107.5(3) pm; Z = 4/3, space group Pnma) a X-ray structure determination has been performed (R1 = 0,036 for 488 ?observed”? resp. wR2 = 0,073 for all 643 independent reflexions). It revealed a framework of polyhedra related to perovskite, in which chains of edgesharing pyramids [FeO5] (average Fe1? O: 197 pm; Fe1? Fe1: 305.5 pm) are linked via apices with corner-sharing [FeO6] octahedra (Fe2? O: 201 pm). 12–fold, strongly distorted cuboctahedrally coordinated ?perovskite positions”? show mixed occupancy by 2/3 Sr + 1/3 Pb (= Sr2; Sr2? O: 287 pm). More spacy channels, running parallel to the chains of pyramids along [010] of the structure, contain lead atoms only. The double occupancy of the corresponding cages results in short distances Pb1? Pb1 (355.9 pm) and Pb1? Fe2 (314.4 pm), as well as in a very asymmetric [PbO6] coordination (Pb1? O: 253 pm), in the opposite hemisphere of which the lone electron pair s2 is supposed to be located. Details are communicated and structural relations discussed.  相似文献   

14.
The new intermetallic compound Pr6Pd13Cd4 was synthesized from the elements in a sealed tantalum ampoule in an induction furnace. Pr6Pd13Cd4 was investigated by X‐ray powder and single crystal diffraction: Na16Ba6N type, , a = 975.6(1) pm, wR2 = 0.0192, 162 F2 values and 12 variables. The striking motif of the Pr6Pd13Cd4 structure are discrete palladium centred Pr6 octahedra (296 pm Pr–Pd1) in bcc packing. The octahedra are embedded by a three‐dimensional [Pd3Cd] network with short Pd–Pd (282 pm) and Pd–Cd (274 pm) distances. The structural similarities with the subnitrides Na16Ba6N and Ag16Ca6N are discussed.  相似文献   

15.
Preparation and Crystal Structures of the first Alkalimetall‐hexacarbonato‐oxotetraberyllates: K6[Be4O(CO3)6] · 7 H2O and K6[Be4O(CO3)6] K6[Be4O(CO3)6] · 7 H2O has been prepared by dissolving freshly precipitated Be(OH)2 in an aqueous KHCO3 solution. After enriching the title compound by extraction with ethanol the heptahydrate crystallizes from the organic phase (triklin, P1¯ (No. 2) with a = 951, 01(11), b = 958, 45(12), c = 1601, 7(2) pm, α = 79, 253(13)°, β = 78, 943(12)°, γ = 65, 119(12)°, VEZ = 1290, 6(3)·106 pm3, Z = 2). Thermal decomposition forms rhombohedral crystals of the anhydrous compound (trigonal‐rhombohedric, R3¯ (No. 148) with a = 1416, 42(6), c = 1704, 5(1) pm, VEZ = 2961, 4(3)·106 pm3, Z = 6).  相似文献   

16.
A New Oxotantalate(V): On KLi6[TaO6] [1] For the first time hitherto unknown KLi6[TaO6] was obtained by intimately pulverized mixtures of K2O, Li2O and Ta2O5 (molar ratio K:Li:Ta = 1.1:6.6:1) in a closed Ni-cylinder (800°C, 30 d) in form of colourless single crystals; trigonal-rhomboedral (space group R3 m) with a = 822.6(1) pm, c = 721.2(1) pm (Guinier-Simonpowder data), Z = 3. The determination of the crystal structure (four cycle diffractometer data, 224 out of 224 I0 (hkl), R = 1.80%, Rw = 1.79%, absorption not considered) proves that KLi6[TaO6] is isotypic with KLi6[IrO6], a stuffed derivative of the α-Li6[UO6] structure type. The Madelung Part of Lattice Energy, MAPLE, and Effective Coordination Numbers, ECoN, the latter derived from Mean Effective Ionic Radii, MEFIR, as well as the Charge Distribution, CHARDI, are calculated and discussed.  相似文献   

17.
The Crystal Structure of KPdMIVF7 (MIV = Zr, Hf) Blue single crystals of KPdZrF7 are obtained by heating the binary fluorides in sealed Pt-tubes under dry argon (solid state reaction, T ≈? 720°C, t ≈? 14 d). The compound crystallizes orthorhombically in the space group Pnna-D (Nr. 52); lattice parameters are a = 1 132.3(5) pm, b = 797.5(2) pm, c = 639.8(1) pm; Z = 4 (Four cycle diffractometer data, AED2). According to [F4PdF2/1ZrF5] distortet [PdF6]-octaedra are connected with pentagonal-bipyramidal [ZrF7]-polyhedra via two bridging F?, resulting in [PdZrF11]-groups. These [PdZrF11]-groups built up a threedimensional-network with K+ in its spacings. KPdHfF7 crystallizes isotypically (a = 1 136.1(3) pm, b = 796.4(2) pm und c = 638.8(1) pm; four cycle diffractometer data, AED2).  相似文献   

18.
Mono- and Dinuclear Fluoro Complexes of Titanium (III), Chromium (III), and Iron(III). Syntheses and Structures of (NMe4) (Ti(H2O)4F2)TiF6 · H2O, (NMe4)3Cr2F9, and (NMe4)3Fe2F9 The title compounds have been prepared by reaction of MCl3 (M = Ti, Cr, Fe) with NMe4F in dimethylformamide. (NMe4)3Cr2F9 and (NMe4)3Fe2F9 contain the face-sharing biocathedral M2F93? unit. The M…M distances are 277.1(1) and 289.8(3) pm in (NMe4)3Cr2F9 and (NMe4)Fe2F9, respectively. (NMe4)(Ti(H2O)4F2)TiF6 · H2O contains trans-TiIII(H2O)4F2+ cations and TiIVF62? anions. Crystal data: (NMe4)3Cr2F9: hexagonal, space group P63/m, a = 804.1(3), c = 1857.5(4) pm, Z = 2, 529 reflections, R = 0.049; (NMe4)3Fe2F9: hexagonal, space group P63/m, a = 804.7(5), c = 1 861.6(5) pm, Z = 2, 635 reflections, R = 0,046; (NMe4)(Ti(H2O)4F2)TiF6 · H2O: orthorhombic, space group Pbca, a = 776.9(2), b = 1 616.3(3), c = 2 428.6(7) pm, Z = 8, 2 784 reflections, R = 0,056.  相似文献   

19.
Crystal Structure of the “Supramolecular” Complex [Cs2(18-crown-6)][HgI4] with Unusually Coordinated Cs Ions The reaction of 18-crown-6, 1,4,7,10,13,16-hexaoxacyclooctadecane, with HgI2/CsI in methanol yields crystals of [Cs2(C12H24O6)][HgI4]. The compound crystallizes monoclinically, space group P21/c, Z = 4, a = 1574.8(3), b = 1067.0(3), c = 1693.2(6) pm, and β = 98.29(3)º. The structure consists of a network made up of two different types of [Cs-(18-crown-6)-Cs]2+ cations, interconnected by [HgI4]2? anions. The cations form an “anti-sandwich” structure with relatively short Cs ? Cs distances of 382 pm in the first type of cations and a longer distance of 480 pm in the second type of cations.  相似文献   

20.
Na3GdCl6: Single Crystals of the Low Temperature Form by Metallothermic Reduction of GdCl3 with Na Single crystals of Na3GdCl6-I (low-temperature form, transition to form II at 205°C) are obtained by reaction of GdCl3 with Na (tantalum tube, 700°C, 9 d). The crystal structure [a = 700.72(8), c = 1879.1(3) pm, c/a = 2,682, Vm = 160.40(3) cm3 mol?1, trigonal, R3 (No. 148), Z = 3] may be derived from the LiSbF6 type: Na2 ? Li Gd ? Sb, Cl: ¨AB¨ or h6, with two Na 1 statistically distributed over four “octahedral” in terstices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号