首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Spatial resource subsidies can greatly affect the composition and dynamics of recipient communities. Caves are especially tractable for studying spatial subsidies because primary productivity is absent. Here, we performed an ecosystem-level manipulation experiment to test the direct influence of detrital subsidies on community structure in terrestrial cave ecosystems. After performing baseline censuses of invertebrates, we removed all organic material from 12 caves and constructed exclusion boxes to prevent natural resource inputs. Next, we stocked each cave with standardized quantities of two major natural subsidies to caves: leaves (leaf packs) and carcasses (commercially supplied rodents), and measured the invertebrate colonization and utilization of these resources for 23 months. Over the course of the experiment, 102 morphospecies were observed. Diplopods and collembolans were most abundant on leaf packs, and dipteran larvae and collembolans were most abundant on the rats. On average, caves receiving either treatment did not differ in species richness, but abundance was significantly higher in rat caves over both the duration of the experiment and the temporal "life" of the individual resources, which were restocked upon exhaustion. Post-manipulation invertebrate communities differed predictably depending on the type of subsidy introduced. Over the course of the experiment, caves that received the same subsidy clustered together based on community composition. In addition, the invertebrate community utilizing the resource changed over the duration of the two-year experiment, and evidence of succession (i.e., directional change) was observed. Results from this study demonstrate how allochthonous resources can drive the community dynamics of terrestrial invertebrates in cave ecosystems and highlight the need for consideration of the surface environment when managing and protecting these unique habitats.  相似文献   

2.
Blumenthal DM  Hufbauer RA 《Ecology》2007,88(11):2758-2765
The "evolution of increased competitive ability" (EICA) hypothesis predicts that exotic species will adapt to reduced herbivore pressure by losing costly defenses in favor of competitive ability. Previous studies often support the prediction that plants from exotic populations will be less well defended than plants from native populations. However, results are mixed with respect to the question of whether plants from exotic populations have become more competitive. In a common-garden experiment involving plants from two native and two exotic populations of 14 different invasive species, we tested whether exotic plants generally grow larger than conspecific native plants, and whether patterns of relative growth depend on the intensity of competition. We found a quite consistent pattern of larger exotic than native plants, but only in the absence of competition. These results suggest that invasive species may often evolve increased growth, and that increased growth may facilitate adaptation to noncompetitive environments.  相似文献   

3.
Mast seeding, the synchronous, highly variable seed production among years, is very common in tree species, but there is no consensus about its main causes and the main environmental factors affecting it. In this study, we first analyze a long-term data set on reproductive and vegetative growth of Quercus ilex in a mediterranean woodland in order to identify the main environmental drivers of interannual variation in flower and seed production and contrast the impact of climate vs. adaptive factors as main causes of masting. Second, we conducted an experiment of rainfall exclusion to evaluate the effects of an increasing drought (simulating predictions of global change models) on both reproductive processes. The annual seed crop was always affected by environmental factors related to the precipitation pattern, these abiotic factors disrupting the fruiting process at different periods of time. Seed production was strongly dependent upon water availability for the plant at initial (spring) and advanced (summer) stages of the acorn maturation cycle, whereas the final step of seed development was negatively affected by the frequency of torrential-rain events. We also found clear evidence that seed masting in the study species is not only regulated by selective endogenous rhythms, but is mainly a physiological response to the variable environment. Our results from the rainfall exclusion experiment corroborated the conclusions obtained from the 26-year fruiting record and demonstrated that the high interannual variation in seed crop was mainly determined by the success in seed development rather than by the flowering effort. Under a global change scenario, it could be expected that the drier conditions predicted by climate models reinforce the negative effects of summer drought on seed production, leading to negative consequences for tree recruitment and forest dynamics.  相似文献   

4.
Exposure to residues of the nonsteroidal anti‐inflammatory drug (NSAID) diclofenac present in livestock carcasses has caused extensive declines in 3 Gyps vulture species across Asia. The carcass of a wild Eurasian Griffon Vulture (Gyps fulvus) was found in 2012 on an Andalucian (Spain) game hunting reserve and examined forensically. The bird had severe visceral gout, a finding consistent with Gyps vultures from Asia that have been poisoned by diclofenac. Liver and kidney samples from this Eurasian Griffon Vulture contained elevated flunixin (an NSAID) levels (median = 2.70 and 6.50 mg/kg, respectively). This is the first reported case of a wild vulture being exposed to and apparently killed by an NSAID outside Asia. It is also the first reported instance of mortality in the wild resulting from environmental exposure to an NSAID other than diclofenac. Caso de Sospecha de Envenenamiento por Flunixin de un Buitre Leonado en España  相似文献   

5.
Four decades of observations on the limnology and fishes of Oneida Lake, New York, USA, provided an opportunity to investigate causes of mortality during winter, a period of resource scarcity for most juvenile fishes, in age-0 yellow perch (Perca flavescens) and age-0 white perch (Morone americana). This time series contains several environmental (e.g., winter severity) and biological (e.g., predator abundance) signals that can be used to disentangle multiple effects on overwinter mortality of these fishes. A multiple regression analysis indicated that age-0 yellow perch winter mortality was inversely related to fish length in autumn and to the abundance of alternative prey (gizzard shad [Dorosoma cepedianum] and white perch). However, no length-selective predation of yellow perch by one of the main predators, adult walleye (Sander vitreus), was detected. In contrast, white perch mortality was directly associated with total predator biomass and abundance of white perch in autumn, and inversely related to yellow perch abundance as a potential buffer species, but not to the abundance of gizzard shad. Winter severity was not a significant predictor of mortality for either perch species. Predicted winter starvation mortality, from a model described in the literature, was much lower than observed mortality for yellow perch. Similar models for white perch were correlated with observed mortality. These results collectively suggest that predation is the main mechanism shaping winter mortality of yellow perch, while both predation and starvation may be important for white perch. This analysis also revealed that gizzard shad buffer winter mortality of yellow perch. Although winter duration determines the northern limit of fish distributions, in mid-latitude Oneida Lake and for these species, predator-prey interactions seem to exert a greater influence on winter mortality than starvation.  相似文献   

6.
Reproduction in planktonic animals depends on numerous biotic and abiotic factors. One of them is predation pressure, which can have both direct consumptive effects on population density and sex ratio, and non-consumptive effects, for example on mating and migration behaviour. In copepods, predator vulnerability depends on their sex, motility pattern and mating behaviour. Therefore, copepods can be affected at multiple stages during the mating process. We investigated the reproductive dynamics of the estuarine copepod Eurytemora affinis in the presence and absence of its predator the mysid Neomysis integer in a mesocosm experiment. We found that the proportion of ovigerous females decreased in the presence of predators. This shift was not caused by differential predation as the absolute number of females was unaffected by mysid presence. Presence of predators reduced the ratio of males to non-ovigerous females, but not by predation of males. Our combined results suggest that the shift from ovigerous to non-ovigerous females under the presence of predators was caused by either actively delayed egg production or by shedding of egg sacs. Nauplii production was initially suppressed in the predation treatment, but increased towards the end of the experiment. The proportion of fertilized females was similar in both treatments, but constantly fell behind model predictions using a random mating model. Our results highlight the importance of non-consumptive effects of predators on copepod reproduction and hence on population dynamics.  相似文献   

7.
Tidal currents, seston, and sediments separately influence growth of the hard clam, Mercenaria mercenaria, but it is uncertain how these factors may interact. A 3×3 factorial field experiment, carried out in Great Sound, a coastal lagoon in Southern New Jersey, USA, between May and September 1986, determined the relative effects of three sediment types and three site-specific seston/tidal current regimes on the individual growth of M. mercenaria. Analysis of variance of the change in shell length after 15 wk (differences in initial and final lengths) demonstrated a significant difference (P=0.0064) in growth among sites, but no significant differences (P=0.1331) for growth in different sediments, although trends were evident. Effects of sites were independent of sediment type (P=0.2621). Shell growth rates differed by 10.7% between the slowest and fastest sites, but only differed by 5.7% between sediment types, with fastest growth in sand and slowest in mud. Tidal current speeds and four measures of seston (chlorophyll a, particulate inorganic and organic matter, PIM and POM, and energy content) were measured >20 times in near-bottom waters at each site. Horizontal fluxes of POM exhibited higher correlation coefficients with growth rates, than did seston concentrations or current speeds alone. We attribute significant site differences to differences in horizontal seston fluxes fluxes among sites. We suggest that horizontal seston fluxes may be a major factor affecting individual growth of suspension-feeding bivalves.No. 216 of the Jackson Estuarine Laboratory Contribution Series  相似文献   

8.
Cooperation among non-kin has been attributed sometimes to reciprocal altruism: Two or more individuals exchange behaviour that benefits the respective partner. According to direct reciprocity, cooperation is based on past behaviour of a known partner. In contrast, in generalised reciprocity, cooperation is based on anonymous social experience where the identity of the partner is irrelevant. In a previous study, female Norway rats (Rattus norvegicus) were found to cooperate according to a generalised reciprocity mechanism. In this study, we tested whether Norway rats would also cooperate as predicted by a direct reciprocity mechanism and whether direct reciprocity would cause a higher propensity to cooperate than generalised reciprocity. Focal animals were experimentally manipulated to receive social experience from known or unknown, helpful or defecting partners in an instrumental cooperative task. Our first experiment shows that rats are more helpful towards a partner from which they had received help before than towards a partner that had not helped (i.e. direct reciprocity). Our second experiment revealed that after receiving help by others, rats were more helpful towards a partner from which they had received help before than towards a new partner (i.e. direct reciprocity generated a higher cooperation propensity than generalised reciprocity). We conclude that in female Norway rats, the tendency to cooperate is influenced by partner-specific information. To our knowledge, this is the first study to demonstrate direct reciprocity in rodents, and it is the first study testing direct vs generalised reciprocity in animals.  相似文献   

9.
Forest encroachment threatens the biological diversity of grasslands globally. Positive feedbacks can reinforce the process, affecting soils and ground vegetation, ultimately leading to replacement of grassland by forest species. We tested whether restoration treatments (tree removal, with or without fire) reversed effects of nearly two centuries of encroachment by Abies grandis and Pinus contorta into dry, montane meadows in the Cascade Range, Oregon, USA. In nine, 1-ha plots containing a patchy mosaic of meadow openings and forests of varying age (20 to > 140 yr), we compared three treatments affecting the ground vegetation: control (no trees removed), unburned (trees removed, slash burned in piles leaving 90% of the area unburned), and burned (trees removed, slash broadcast burned). We quantified changes over 3-4 years in soils, abundance and richness of species with differing habitat associations (meadow, forest, and ruderal), and recruitment of conifers. Except for a transient increase in available N (especially in burn scars), effects of burning on soils were minimal due, in part, to mixing by gophers. Tree removal greatly benefited meadow species at the expense of forest herbs. Cover and richness of meadow species increased by 47% and 38% of initial values in unburned plots, but changed minimally in burned plots. In contrast, cover and richness of forest herbs declined by 44% and 26% in unburned plots and by 79% and 58% in burned plots. Ruderal species and conifer seedlings were uncommon in both treatments. Although vegetation was consumed beneath burn piles, meadow species recovered significantly after three years. Long-term tree presence did not preclude recovery of meadow species; in fact, colonization was greater in older than in younger forests. In sum, temporal trends were positive for most indicators, suggesting strong potential for restoration. Contrary to conventional wisdom, tree removal without fire may be sufficient to shift the balance from forest to meadow species. In meadows characterized by historically infrequent fire, small-scale disturbances and competitive interactions may be more critical to ecosystem maintenance and restoration. Managers facing the worldwide phenomenon of tree invasion should critically evaluate the ecological vs. operational need for fire in ecosystem restoration.  相似文献   

10.
11.
Effects of benthic macrofauna (Corophium volutator, Hydrobia sp., Nereis virens) on benthic community metabolism were studied over a 65-d period in microcosms kept in either light/dark cycle (L/D-system) or in continuous darkness (D-system). Sediment and animals were collected in January 1986 in the shallow mesohaline estuary, Norsminde Fjord, Denmark. The primary production in the L/D-system after 10 d acted as a stabilizing agent on the O2 and CO2 flux rates, whereas the D-system showed decreasing O2 and CO2 flux throughout the period. Mean O2 uptake over the experimental period ranged from 0.38 to 1.24 mmol m–2 h–1 and CO2 release varied from 0.80 to 1.63 mmol m–2 h–1 in both systems. The presence of macrofauna stimulated community respiration rates measured in darknes, 1.4 to 3.0 and 0.9 to 2.0 times for O2 and CO2, respectively. In contrast, macrofauna lowered primary production. Gross primary production varied from 1.06 to 2.26 mmol O2 m–2 h–1 and from 1.26 to 2.62 mmol CO2 m–2 h–1. The community respiratory quotient (CRQ, CO2/O2) was generally higher in the begining of the experiment (0–20 d, mean 1.89) than in the period from Days 20 to 65 (mean 1.38). The L/D-system exhibited lower CRQ (ca. 1) than the D-system. The community photosynthetic quotient varied for both net and gross primary production from 0.64 to 1.03, mean 0.81. The heterotrophic D-system revealed a sharp decrease in the sediment content of chlorophyll a as compared to the initial content. In the autotrophic L/D-system, a significant increase in chlorophyll a concentration was observed in cores lacking animals and cores with C. volutator (The latter species died during the experiment). Due to grazing and other macrofauna activities other cores of the L/D-system exhibited no significant change in chlorophyll a concentration. Community primary production was linearly correlated to the chlorophyll a content in the 0 to 0.5 cm layer. Fluxes of DIN (NH4 ++NO2 +NO3 ) did not reveal significant temporal changes during the experiment. Highest rates were found for the cores containing animals, mainly because of an increased NH4 + flux. The release of DIN decreased significantly due to uptake by benthic microalgae in the L/D-system. No effects of the added macrofauna were found on particulate organic carbon (POC), particulate organic nitrogen (PON), total carbon dioxide (TCO2) and NH4 + in the sediment. The ratio between POC and PON was nearly constant (9.69) in all sediment dephts. The relationship between TCO2 and NH4 + was more complex, with ratios below 2 cm depth similar to those for POC/PON, but with low ratios (3.46) at the sediment surface.  相似文献   

12.
Niu S  Sherry RA  Zhou X  Wan S  Luo Y 《Ecology》2010,91(11):3261-3273
Modeling studies have shown that nitrogen (N) strongly regulates ecosystem responses and feedback to climate warming. However, it remains unclear what mechanisms underlie N regulation of ecosystem-climate interactions. To examine N regulation of ecosystem feedback to climate change, we have conducted a warming and clipping experiment since November 1999 in a tallgrass prairie of the Great Plains, USA. Infrared heaters were used to elevate soil temperature by an average of 1.96 degrees C at a depth of 2.5 cm from 2000 to 2008. Yearly biomass clipping mimicked hay or biofuel feedstock harvest. We measured carbon (C) and N concentrations, estimated their content and C:N ratio in plant, root, litter, and soil pools. Warming significantly stimulated C storage in aboveground plant, root, and litter pools by 17%, 38%, and 29%, respectively, averaged over the nine years (all P < 0.05) but did not change soil C content or N content in any pool. Plant C:N ratio and nitrogen use efficiency increased in the warmed plots compared to the control plots, resulting primarily from increased dominance of C4 plants in the community. Clipping significantly decreased C and N storage in plant and litter pools (all P < 0.05) but did not have interactive effects with warming on either C or N pools over the nine years. Our results suggest that increased ecosystem nitrogen use efficiency via a shift in species composition toward C4 dominance rather than plant N uptake is a key mechanism underlying warming stimulation of plant biomass growth.  相似文献   

13.
Gillman LN  Wright SD 《Ecology》2006,87(5):1234-1243
Despite much scrutiny the relationship between productivity and species richness remains controversial, and there is little agreement about causal processes. We present the results of a survey of 159 productivity-plant species richness (P-PSR) relationships from 131 published studies. We critically assessed each study with respect to experimental design and for the appropriateness of the surrogates used for productivity. We were able to accept only 60 of the reported relationships as robust tests of the P-PSR relationship and a further 18 as robust tests of the biomass species richness relationship. Previous analyses have found that unimodal P-PSR relationships predominate. In contrast, we found that, in studies that used data of continental to global extent, all P-PSR relationships were positive regardless of grain, that almost all were also positive in data sets of regional extent, and that unimodal relationships were not dominant even in studies of fine grain or small spatial extent. Our results differ substantially from previous meta-analyses because previous studies have included a large number of studies that do not meet basic experimental design criteria for objectively testing P-PSR relationships. These results have important implications for theory that attempts to explain species richness patterns. We critically review four dominant theories in light of our results and develop new falsifiable predictions of relationship from these theories at both small and large spatial scales.  相似文献   

14.
Intraguild predation (IGP) occurs when one predator species consumes another predator species with whom it also competes for shared prey. One question of interest to ecologists is whether multiple predator species suppress prey populations more than a single predator species, and whether this result varies with the presence of IGP. We conducted a meta-analysis to examine this question, and others, regarding the effects of IGP on prey suppression. When predators can potentially consume one another (mutual IGP), prey suppression is greater in the presence of one predator species than in the presence of multiple predator species; however, this result was not found for assemblages with unidirectional or no IGP. With unidirectional IGP, intermediate predators were generally more effective than the top predator at suppressing the shared prey, in agreement with IGP theory. Adding a top predator to an assemblage generally caused prey to be released from predation, while adding an intermediate predator caused prey populations to be suppressed. However, the effects of adding a top or intermediate predator depended on the effectiveness of these predators when they were alone. Effects of IGP varied across different ecosystems (e.g., lentic, lotic, marine, terrestrial invertebrate, and terrestrial vertebrate), with the strongest patterns being driven by terrestrial invertebrates. Finally, although IGP theory is based on equilibrium conditions, data from short-term experiments can inform us about systems that are dominated by transient dynamics. Moreover, short-term experiments may be connected in some way to equilibrium models if the predator and prey densities used in experiments approximate the equilibrium densities in nature.  相似文献   

15.
A Lagrangian module has been developed and coupled with the 3D circulation model Symphonie to study the influence of hydrodynamic processes on zooplankton transport and distributions in the North Western Mediterranean (NWM). Individuals are released every 3 days from March to August 2001 in two initial areas: around the DYFAMED sampling station in the central Ligurian Sea and in the Rhône river plume. Then the individuals are tracked for 40 days either as passive particles or with a simple diel vertical migration (DVM) pattern. The simulations suggest strong seasonal patterns in the distributions of the individuals released around the DYFAMED sampling station. Individuals spread all over the NWM basin after 40 days but different patterns occur depending on the season, the initial depths of release and the capacity of DVM. Offshore-shelf transport only occurs in April and May with particles ending up in the Gulf of Lions (GoL) in low concentrations. In other months, the Northern Current (NC) can be considered as a barrier for particles entering the GoL from the offshore sea. A quarter to a half of passive individuals released in the Rhône river plume remain in the GoL. The rest is transported by the NC towards the Catalan Sea. Applying a simple DVM scheme does not increase the retention of particles on the shelf.  相似文献   

16.
We recorded behaviour of kestrels (Falco tinnunculus) in western Finland during the courtship (1988–1992), incubation (1989–1991), early nestling (age of young 1–2 weeks, 1989–1992) and late nestling stages (3–4 weeks, 1989–1991) to examine determinants of their parental effort (PE). In males, PE was estimated as the hunting effort (the proportion of budget time spent in flight-hunting) and in females as the food provisioning rate (number of prey items delivered to the nest per hour). The following predictions derived from the parental investment theory were examined. (1) Parents rearing large clutches and broods should invest more in breeding than do parents rearing small clutches and broods. The hunting effort of parents did not increase with clutch or brood size, but males tending large broods had a higher prey delivery rate than males tending small broods (Figs 1–2). (2) PE of parents should increase in the course of the breeding season. In males, this was true only between the incubation and early nestling phases (Fig. 3). (3) The early pairs should invest more in breeding than late ones. This tended to be true during the early (for males) and late nestling phases (for females) (Fig. 4). (4) There should be a negative correlation between PE of mates within pairs, but no evidence for such adjustment was found (Fig. 5). (5) Females mated with bright-coloured attractive males should show higher PE than females mated with dull-coloured males but our results were inconsistent with this prediction. We conclude that PE decisions of kestrels are mainly based on cost-benefit estimates of residual reproductive value, rather than on current investment indicators, like clutch or brood size. This might be beneficial in environments with highly variable survival prospects of offspring caused by pronounced among-year variation in abundance of the main food (microtine rodents). The results also show that hypotheses explaining variation in PE in the short term are not necessarily valid for long-term PE, e.g. tending clutches or broods, which also reflects the demands of female and young.  相似文献   

17.
Trussell GC  Ewanchuk PJ  Matassa CM 《Ecology》2008,89(10):2798-2807
It is well established that predators can scare as well as consume their prey. In many systems, the fear of being eaten causes trait-mediated cascades whose strength can rival or exceed that of more widely recognized density-mediated cascades transmitted by predators that consume their prey. Despite this progress it is only beginning to be understood how the influence of predation risk is shaped by environmental context and whether it can exert an important influence on ecosystem-level processes. This study used a factorial mesocosm experiment that manipulated basal-resource identity (either barnacles, Semibalanus balanoides, or mussels, Mytilus edulis) to determine how resources modify the influence of predation risk, cascade strength, and the efficiency of energy transfer in two, tritrophic, rocky-shore food chains containing the predatory green crab (Carcinus maenas) and an intermediate consumer (the snail, Nucella lapillus). The effect of predation risk and the strength of trait-mediated cascades (both in absolute and relative terms) were much stronger in the barnacle than in the mussel food chain. Moreover, predation risk strongly diminished the efficiency of energy transfer in the barnacle food chain but had no significant effect in the mussel food chain. The influence of resource identity on indirect-effect strength and energy transfer was likely caused by differences in how each resource shapes the degree of risk perceived by prey. We suggest that our understanding of the connection between trophic dynamics and ecosystem functioning will improve considerably once the effects of predation risk on individual behavior and physiology are considered.  相似文献   

18.
Manzoni S  Schimel JP  Porporato A 《Ecology》2012,93(4):930-938
Soil heterotrophic respiration and nutrient mineralization are strongly affected by environmental conditions, in particular by moisture fluctuations triggered by rainfall events. When soil moisture decreases, so does decomposers' activity, with microfauna generally undergoing stress sooner than bacteria and fungi. Despite differences in the responses of individual decomposer groups to moisture availability (e.g., bacteria are typically more sensitive than fungi to water stress), we show that responses of decomposers at the community level are different in soils and surface litter, but similar across biomes and climates. This results in a nearly constant soil-moisture threshold corresponding to the point when biological activity ceases, at a water potential of about -14 MPa in mineral soils and -36 MPa in surface litter. This threshold is shown to be comparable to the soil moisture value where solute diffusion becomes strongly inhibited in soil, while in litter it is dehydration rather than diffusion that likely limits biological activity around the stress point. Because of these intrinsic constraints and lack of adaptation to different hydro-climatic regimes, changes in rainfall patterns (primary drivers of the soil moisture balance) may have dramatic impacts on soil carbon and nutrient cycling.  相似文献   

19.
Population models are increasingly being considered as a tool for pesticide risk assessment in order to evaluate how potential effects act on the population level and population recovery. While the importance and difficulties of such models have been discussed by various authors during the past decade, mainly with a focus on how to describe or develop such models, several biological and methodological aspects have never been addressed so far, which are relevant for the application of models in risk assessment. These include a critical review of our knowledge of a species, the use of field data by taking methodological constraints into account, how to include uncertainty in model validation or how to measure effects. Although these aspects will be critical for the acceptance of population models by authorities, most of them apply not only to population models, but also to standard risk assessment. In the present article, we give practical recommendations for addressing these questions in population level risk assessments.  相似文献   

20.
The release of arsenic from technosols was monitored using short-term dynamic leaching of homogeneous soil columns with native solution. Large amounts of readily available arsenic (16 mg kg?1) were extracted from arsenic-rich ashy samples while representing less than 4 wt % of their total contents. In the first hour of leaching, the observed concentrations of water-soluble arsenic ranged from 650 to 830 μg L?1, further increasing in the following leachates. The results showed that the concentrations of water-soluble arsenic were several times higher than the recommended limits for drinking water. Yet, most of arsenic is strongly bound to amorphous aluminosilicate phases. The contents of arsenic in the studied plant samples, including calculated transfer factors, confirmed that increased concentrations of arsenic in the soil of geological environment affected by dam failure of a coal ash pond may have a negative effect on crops since arsenic becomes part of the food chain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号