首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Double oxidation of [CoIII(3,5-DTBCat)(3,5-DTBSQ)(bpy)] (1,ls-Co(III)) by AgBF4 and of [CoII(3,5-DTBSQ)2(bpy)] (1,hs-Co(II)) by a mixture of HClO4/H2O2 yielded [CoIII(3,5-DTBSQ) (bpy)2]X2, where X=BF4 (4) and ClO4 (5), respectively. The mechanism for the double-oxidation process that leads to a loss of one of the quinone ligands and in some cases to a redistribution of the electronic charge is discussed here.  相似文献   

2.
Thermally induced redox reactions of K3[Fe(CN)6] (1) were investigated for a broad temperature range by thermal methods and structure analytical methods (ESR and Mößbauer spectroscopy, X-ray Powder diffraction and XANES). Based on the influence of the mechanically activated and transforming matrices 2 and 3, redox processes can be tuned to form doped Al2O3 systems which contain either isolated Fe3+ centres or redox active phases and precursors like (Al1−xFex)2O3 (4), (Al3−xFex)O4 (5), Fe3O4, Fe2O3 and Fe0. The phase Fe3C and the chemically reactive C-species were detected during the reaction of 1. The final composition of the doped products of α-Al2O3 is mainly influenced by the chemical nature of the Fe doping component, the applied temperature and time regime, and the composition of the gas phase (N2, N2/O2 or N2/H2). From the solid state chemistry point of view it is interesting that the transforming matrix (2 and 3) possesses both oxidative and protective properties and that the incorporation of the Fe species can be performed systematically.  相似文献   

3.
曹慧波  何伦华  王芳卫 《中国物理》2005,14(9):1892-1895
A new single-molecule magnet [Mn11Fe1O12 (CH3COO)16(H2O)4]?2CH3COOH?4H2O (Mn11Fe1) has been synthesized.The structure has been studied by the single crystal x-ray diffraction. The difference of Jahn--Teller distortion between Fe3+ and Mn3+ ion reveals that Fe3+ ion substitutes for Mn3+ ion on the Mn(3) sites in the Mn12 skeleton. The temperature dependence of the magnetization gives a blocking temperature TB=1.9K for Mn11Fe1. Based on the magnetization process analysis of the crystal at T=2K, we suggest that Mn11Fe1 has the ground state with a total spin S= 11/2.  相似文献   

4.
A new molecular solid, [1-(4′-bromo-2′-fluorobenzyl)-4-dimetylaminopyridinium]-bis(maleonitriledithiolato)nickel(III), (BrFBzPyN(CH3)2(Ni(mnt)2)(1), has been prepared and characterized by elemental analyses, IR, ESI-MS spectra, single crystal X-ray diffraction and magnetic measurements. Compound 1 crystallizes in the orthorhombic space group Pnma, a=20.579(4) Å, b=7.078(1) Å, c=17.942(4) Å, α=β=γ=90°, V=2613.3(9) Å3, Z=4. The Ni(III) ions of 1 form a quasi-one-dimensional Zigzag magnetic chain within a Ni(mnt)2 column through Ni?S, S?S, Ni?Ni, or π?π interactions with an Ni?Ni distance of 4.227 Å. Magnetic susceptibility measurements in the temperature range 2-300 K show that 1 exhibits a spin-gap transition around 200 K, and antiferromagnetic interaction in the high-temperature phase (HT) and spin gap in the low-temperature phase (LT). The transition for 1 is second-order phase transition as determined by DSC analyses.  相似文献   

5.
The ab initio calculations, based on the Korringa–Kohn–Rostoker (KKR) approximation method combined with the coherent potential approximation (CPA), indicated as KKR–CPA, have been used to study the stability of ferromagnetic and ferrimagnetic states, for systems that are SnO2 doped and co-doped with two transition metals, that is, chromium and manganese. Our results indicate that the ferromagnetic state is more stable than the spin-glass state for the (Sn1−xCrxO2; x = 0.07, 0.09, 0.12 and 0.15)-doped system, while the spin-glass state is more stable than the ferromagnetic state for the (Sn1−xMnxO2; x = 0.02 and 0.05)-doped system. However, the ferromagnetic and/or the ferrimagnetic states are stable for the (Sn0.98−xMn0.02CrxO2; x = 0.05, 0.09 and 0.13)-doped system depending on the Cr concentration. Moreover, we estimated the Curie temperature (Tc) for the Cr-doped tin dioxide (SnO2), and we explained the origin of magnetic behaviour through the total density of states for different doped and co-doped SnO2 systems.  相似文献   

6.
A new mono-functionalized porphyrin derivative, 5-mono-[4-(2-(4-hydroxy)-phenoxy)ethoxy]-10,15,20-triphenylporphyrin (3) and its Cu(II) (3a), Zn(II) (3b) and Ni(II) (3c) metalloporphyrins were synthesized and characterized by using various spectroscopic techniques. The corresponding 3a, 3b, 3c-TiO2 photocatalysts were then prepared and characterized by means of FT-IR and diffused reflectance spectra, X-ray diffraction (XRD) and scanning electron microscopy (SEM). The photocatalytic activities of 3a, 3b, 3c-TiO2 were investigated by testing the photodegradation of 4-nitrophenol (4-NP) in aqueous solution under the halogen lamp irradiation. The results indicated that all the 3a, 3b, 3c enhanced the photocatalytic efficiency of bare TiO2 in photodegrading the 4-NP, and 3a-TiO2 exhibited the highest photocatalytic activity. The result is considered a combined action of potential match of 3a with TiO2 CB and effective impregnated of 3a onto the surface of TiO2.  相似文献   

7.
We present a neutron powder diffraction investigation of the magnetic structure of La3NiGe2-type Tb3NiGe2 and Mn5Si3-type Tb5NixGe3−x (x=0, 0.3) compounds. It is found that below∼135 K Tb3NiGe2 exhibits a commensurate b-collinear ferrimagnetic ordering with C2h′={1, mz, 1′×2z, 1′×1?} magnetic point group. The Mn5Si3-type Tb5Ge3 and Tb5Ni0.3Ge2.7 compounds are found to present a flat spiral type antiferromagnetic ordering at 85 and ≥89 K, respectively. The Ni for Ge substitution is found to decrease the flat spiral ordered magnetic unit cell from a×a×40c of Tb5Ge3 (below 40 K) down to a×a×5c for Tb5Ni0.3Ge2.7 (below ∼10 K).  相似文献   

8.
The electron paramagnetic resonance spectra of a molecular magnet synthesized from [Mn12O12(MeCO2)16(H2O)4] high-spin clusters and tetramethyltetrathiafulvalene donor organic molecules are investigated. It is revealed that, in the temperature range 5–7 K, there appears an additional signal against the background of the ferromagnetic resonance spectrum. The additional signal consists of a large number of lines and has a resonance nature, because it is observed in the well-reproduced narrow ranges of the constant magnetic field of the spectrometer (300–650 and 850–1300 Oe) at a frequency of 9.4152 GHz. The appearance of the additional signal at a temperature of 5 K is attended by a multiple increase in the magnetic susceptibility of the sample. There is a correlation between the spectral characteristics of the additional signal (such as the average amplitude, the spectral power, etc.) and the parameters of the ferromagnetic resonance spectrum (the resonance field, the linewidth, and the integrated intensity). The assumption is made that the additional signal is associated with the magnetic-field-induced transitions between spin states of Mn12 high-spin clusters for different orientations of crystallites with respect to the external magnetic field. Original Russian Text ? R.B. Morgunov, V.L. Berdinskiĭ, A.I. Dmitriev, Y. Tanimoto, 2007, published in Fizika Tverdogo Tela, 2007, Vol. 49, No. 5, pp. 945–950.  相似文献   

9.
Three novel lanthanide 1-D chain coordination polymers, namely {[Tb(μ2-L)2(η2-NO3)(CH3OH)(H2O)]·0.5CH3OH·0.5H2O}n (1), {[Dy(μ2-L)2(η2-NO3)(CH3OH)(H2O)]·H2O}n (2) and {[Ce(μ2-L)2(η2-NO3)(H2O)3]·H2O}n (3) (HL=N-benzoyl-N′-(4-benzoxy)thiourea), have been prepared and characterized by IR spectroscopy, elemental analysis and single-crystal X-ray diffraction. The luminescence properties and themostabilities of polymers 1-3 have been determined as well.  相似文献   

10.
In the isostructural cyanobridged chain compounds N(CH3)4MnIIMIII(CN)6 · 8H2O high spin Mn(II) ions couple antiferromagnetically to low spin Mn(III) of Fe(III) ions. The MnII–MnIII compound orders ferrimagnetically below TN = 28.5 ± 1 K. The tetragonal a and b axes are easy ones for the magnetic moments. In the MnII–FeIII compound antiferromagnetic order occurs below TN = 9.3 K, with spins aligned along the tetragonal c axis. The compound undergoes a meta-magnetic transition from the antiferromagnetic to a ferrimagnetic phase. This occurs at 2 K for a field Hcrit ≈ 1.2 T. The temperature dependence of Hcrit, which vanishes at TN, is followed. The tricritical temperature T1 is ~ 5 K.  相似文献   

11.
The hydrothermal synthesis, single crystal X-ray structures and magnetic properties of two layered cobalt-carboxylate complexes, 2[CoII(O2CCH(OH)C6H5)2] (1) and 2[CoII(O2CCH(NH2)C6H5)2] (2), where O2CCH(OH)C6H5 is mandalate and O2CCH(NH2)C6H5 is phenylglycinate, are described. Pale pink crystals of 1 and 2 were obtained by the reaction of cobalt nitrate and the enantiomer-pure acids at 120 °C. In each case, the structure consists of stacks of quasi square-grid polymeric sheets consisting of carboxylato- bridges, M-O-C-O-M, and the presence of both d- and l-enantiomers of the ligands segregated on each face of the layer. The ligands exhibit both chelating and bridging functions with the carboxylate group adopting an anti-anti mode. The magnetic properties are characteristic of weakly interacting paramagnets where the moments are elevated by an important orbital contribution via spin-orbit coupling.  相似文献   

12.
13.
In this paper neutron diffraction experiments were performed for Fe-substituted Mn12 in order to determine the sites of Fe atoms. The results of structure refinements for the sample with our accessed highest Fe content showed that all Fe atoms occupied Mn(3) sites in the Mn12 skeleton. The x-ray absorption fine structure experiments as well as multiple scattering simulations gave the same result. Thus we concluded that Fe atoms only occupied Mn(3) sites. This conclusion also means that Fe-substituted Mn12 series only includes the four single-molecule magnets of [Mn12-xFexO12(CH3COO)16(H2O)4]·2CH3COOH·4H2O (x = 1, 2, 3, and 4), denoted by Mn11Fe1, Mn10Fe2, MngFe3, and Mn8Fe4, respectively.  相似文献   

14.
Four Ln3+ coordination complexes with the formulas [Ln(p-toluylate)2(Ac)(H2O)]n (Ln=Ho 1, Yb 2) and {[Ln2(OOCCH2CH2COO)3(H2O)4]·6H2O}n (Ln=Ho 3, Yb 4) were synthesized hydrothermally. Their structures were determined by single-crystal X-ray diffraction. Complexes 1 and 2 are isomorphic and form infinite 2D network structures comprising p-toluylate and acetate (Ac) moieties. Complexes 3 and 4 are also isomorphic and possess infinite 2D structures in which succinate acts as bridging ligands that are connected to a 3D hydrogen bonding network by O–H…O hydrogen bonds. Solid-state IR and UV-Vis-NIR spectra, excitation and emission spectra were determined for the four complexes at room temperature. Complexes 1 and 2 exhibit characteristic NIR emission bands of Ln3+ ions but these are shifted and split relative to the theoretical positions. This is also evident for their UV-Vis-NIR spectra. The influence of ligands on enhancing the NIR luminescence of Ln3+ ions in complexes is discussed.  相似文献   

15.
In this study, nano-scale precursors of ZnO, SiO2, and MnO2 powders were used to prepare mixtures with the compositions of 2ZnO+SiO2+X mol% MnO2 (X=MnO2/2ZnO, abbreviated as Zn2SiO4-X-MnO2), where 2≤X≤5. The mixed Zn2SiO4-X-MnO2 mixtures were calcined from 900 to 1300 °C in air in order to synthesize Zn2SiO4:Mn2+ green phosphors. The X-ray diffraction patterns of Zn2SiO4-X-MnO2 particles indicated that ZnO was present in the 900 °C-calcined Zn2SiO4-X-MnO2 phosphors, but not in particles calcined at temperatures of 1000 °C and higher. However, the unapparent secondary phase of ZnMnO3 was found in the 1200 and 1300 °C-calcined Zn2SiO4-5-MnO2 compositions. The luminescent characteristics of Zn2SiO4-X-Mn2+ phosphors were compared with that of a commercial product (Nichia Corp., Japan). The photoluminescence (PL) intensity of 1200 °C-calcined Zn2SiO4-4-MnO2 phosphors was higher and the decay times of all synthesized Zn2SiO4-X-MnO2 phosphors were longer than those of the commercial product.  相似文献   

16.
The magnetic susceptibility and the heat capacity of a layered manganese compound Mn(NH3)2Ni(CN)42C12H10 have been measured down to the antiferromagnetic ordered state. A similar symmetric logarithmic singularity in the heat capacity is found for the isomorphic nickel compound Ni(NH3)2Ni(CN)42C12H10 has been observed at TN = 0.172 K.  相似文献   

17.
The use of N,N′-ethylenebis(salycylideneiminato) (salen) complexes of MnIII in assembling high-spin metal-cyanide coordination clusters with significant magnetic anisotropy is demonstrated. The reaction of [Mn(salen)(H2O)2]+with [Cr(CN)6]3− in aqueous solution generates {Cr[CNMn(salen)(H2O)]6}[Cr(CN)6]·6H2O (1), a previously reported compound featuring a heptanuclear cluster with a distorted octahedral geometry. A fit to the variable-temperature magnetic susceptibility data for 1 revealed the presence of weak antiferromagnetic coupling of within the cluster, giving rise to an S=21/2 ground state. In addition, variable-field magnetization data collected at low temperatures revealed the presence of magnetic anisotropy in the ground state, with the best fit yielding zero-field splitting parameters of D=+0.19 cm−1 and A reaction intended to produce a direct analogue of 1 by employing [Fe(CN)6]3− in place of [Cr(CN)6]3− instead gave an unusually complex compound of formula {Fe(CN)4[CNMn(salen)(MeOH)]2}{[Mn(salen)(H2O)]2}[Mn(salen)(H2O)(MeOH)]2[Fe(CN)6]·4H2O (2). The crystal structure and magnetic properties of this compound are reported.  相似文献   

18.
A Prussian-blue analogue Mn3[Cr(CN)6]2·12H2O has been prepared and characterized by single crystal X-ray analysis and magnetic measurements. The complex has a disordered face-centered cubic lattice and shows two magnetic transition temperatures of 74 and 61 K.  相似文献   

19.
Gamma irradiated [(CH3)4N]InCl4 and [(CH3)4N]2CdCl4 single crystals were investigated by electron paramagnetic resonance at ambient temperature, and it has been found that both compounds indicate the existence of (CH3)3N+ radicals. The g factors were found to be isotropic, and the hyperfine constant for H atoms was measured as 2.86 mT and is isotropic for this radical in these substances. The hyperfine coupling constant of the N nucleus with the hole in (CH3)3N+ in [(CH3)4N]InCl4 was found to be anisotropic with the Azz=2.92, Ayy=1.62 and Axx=1.40 mT. From these, it has been revealed that the C3v-axis of (CH3)3N+ radical performs rotational or jumping reorientational motions around a fixed axis, in addition to the rotations of protons in CH3 groups and the rotational motions of CH3 groups around the C3v-axis of the radical. The g, and the hyperfine coupling factors of the N nucleus were isotropic in (CH3)3N+ in [(CH3)4N]2CdCl4. This indicates the motional behaviour of the radical in this compound is as in a liquid. This isotropic behaviour of the hyperfine coupling constants was found to be same until the attainable lowest temperature of 113 K in our laboratory.  相似文献   

20.
The high pressure properties of icosahedral boron arsenide (B12As2) were studied by in situ X-ray diffraction measurements at pressures up to 25.5 GPa at room temperature. B12As2 retains its rhombohedral structure; no phase transition was observed in the pressure range. The bulk modulus was determined to be 216 GPa with the pressure derivative 2.2. Anisotropy was observed in the compressibility of B12As2c-axis was 16.2% more compressible than a-axis. The boron icosahedron plays a dominant role in the compressibility of boron-rich compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号