首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Abstract

Combustion modifications to minimise NOx emissions have led to the existence of reducing conditions in furnaces. As regulations demand lower NOx levels, it is possible (to a degree) to continue to address these requirements with increased levels of combustion air staging. However, in most practical situations, a number of adverse impacts prevent the application of deep combustion air staging. One of the more important limitations is the increased corrosion that can occur on wall tubes exposed to fuel rich combustion environments. Current boiler corrosion monitoring techniques rely on ultrasonic tube wall thickness measurements typically conducted over 12 to 24 month intervals during scheduled outages. Corrosion coupons are also sometimes used; typically require considerable exposure time to provide meaningful data. The major drawback of these methods is that corrosion information is obtained after the damage has been done. Management of boiler waterwall loss and system optimisation therefore requires a real-time indication of corrosion rate in susceptible regions of the furnace. This paper describes the results of a program of laboratory trials and field investigations and considers the use of an on-line technology in combination with innovative applications, also modelling and precision metrology to better manage waterwall loss in fossil fuelled boilers while minimising NOx emissions.  相似文献   

3.
In present study, heat transfer and turbulent flow of water/alumina nanofluid in a parallel as well as counter flow double pipe heat exchanger have been investigated. The governing equations have been solved using an in-house FORTRAN code, based on finite volume method. Single-phase and standard k-ε models have been used for nanofluid and turbulent modeling, respectively. The internal fluid has been considered as hot fluid (nanofluid) and the external fluid, cold fluid (base fluid). The effects of nanoparticles volume fraction, flow direction and Reynolds number on base fluid, nanofluid and wall temperatures, thermal efficiency, Nusselt number and convection heat transfer coefficient have been studied. The results indicated that increasing the nanoparticles volume fraction or Reynolds number causes enhancement of Nusselt number and convection heat transfer coefficient. Maximum rate of average Nusselt number and thermal efficiency enhancement are 32.7% and 30%, respectively. Also, by nanoparticles volume fraction increment, the outlet temperature of fluid and wall temperature increase. Study the minimum temperature in the solid wall of heat exchangers, it can be observed that the minimum temperature in counter flow has significantly reduced, compared to parallel flow. However, by increasing Reynolds number, the slope of thermal efficiency enhancement of heat exchanger gradually tends to a constant amount. This behavior is more obvious in parallel flow heat exchangers. Therefore, using of counter flow heat exchangers is recommended in higher Reynolds numbers.  相似文献   

4.
Coral reefs are constructed by calcifying coral animals that engage in a symbiosis with dinoflagellate microalgae harboured in their tissue. The symbiosis takes place in the presence of steep and dynamic gradients of light, temperature and chemical species that are affected by the structural and optical properties of the coral and their interaction with incident irradiance and water flow. Microenvironmental analyses have enabled quantification of such gradients and bulk coral tissue and skeleton optical properties, but the multi-layered nature of corals and its implications for the optical, thermal and chemical microenvironment remains to be studied in more detail. Here, we present a multiphysics modelling approach, where three-dimensional Monte Carlo simulations of the light field in a simple coral slab morphology with multiple tissue layers were used as input for modelling the heat dissipation and photosynthetic oxygen production driven by photon absorption. By coupling photon, heat and mass transfer, the model predicts light, temperature and O2 gradients in the coral tissue and skeleton, under environmental conditions simulating, for example, tissue contraction/expansion, symbiont loss via coral bleaching or different distributions of coral host pigments. The model reveals basic structure–function mechanisms that shape the microenvironment and ecophysiology of the coral symbiosis in response to environmental change.  相似文献   

5.
It has been reported that trans-critical LNG vaporization process always occurs on the tube-side of typical submerged combustion vaporizer (SCV). In-depth analysis of this complex physical process is crucial for the stable operation of efficient SCV. In the present paper, a three-dimensional CFD numerical model was developed to analyze the flow and heat transfer characteristics of trans-critical LNG in the horizontal tube. Based on the numerical simulation results, the velocity, temperature and heat flux along the tube length were obtained. The distributions of local heat transfer coefficients under different operating pressures were also analyzed. The calculated results displayed that the representative phenomenon of “flow acceleration” occurs inside the horizontal serpentine tube. Affected by the variation of the physical properties, the heat transfer coefficient under the lower operating pressure was higher around pseudo-critical region, but decreased lower in the later field. Totally, the higher operating pressure may bring faster temperature rising and lower energy expenditure to reach the similar outlet temperature.  相似文献   

6.
Heat and mass transfer and fluid flow characteristics in evaporative condensers is discussed. A complex pattern of water temperature and air enthalpy change was detected which depended upon elevation above the sump level. The results have indicated that the spray-filled space beneath the coil has a substantial effect of heat rejection in this type of apparatus. On the other hand, the effect of the upper spray nozzle zone is insignificant. It is possible to optimize the combination of various heat and mass transfer spaces, as well as the effect of extended surfaces and spray-filled spaces. Specifically, it will help to design better evaporative condensers with closely spaced staggered tubes, and to optimize the heat transfer and energy efficiency characteristics of such units.  相似文献   

7.
New measurements of the thermal conductivity of liquid toluene between 300 and 550 K have been used to study the importance of radiative heat transfer when using the transient hot-wire technique. The experimental data were used to obtain the radiation correction to the hot-wire temperature rises. Radiationcorrected values of thermal conductivity are reported. This study shows that the transient hot-wire method is much less affected by radiation than steady-state techniques.  相似文献   

8.
Fluid flow and heat transfer characteristics of nanofluids flowing through helically coiled tubes under uniform heat flux condition are studied experimentally. The turbulent flow of two different kinds of nanofluids, i.e. Ag-water and SiO2-water, are examined. Three different helically coiled tubes along with straight ones are constructed to investigate the effects of geometrical parameters such as pitch circle diameter and helical pitch as well as nanoparticle volume concentration. The viscosity and thermal conductivity of nanofluids are determined experimentally in different volume fractions and temperatures. The range of Reynolds number is from 8900 to 11970. The experimental outcomes show that using nanoparticles in coiled tubes can be more effective in improving the heat transfer rate than the straight tube. Empirical correlations are extracted based on experimental data to predict the Nusselt number and friction factor of turbulent nanofluids flow through helically coiled tubes.  相似文献   

9.
Abstract

A numerical analysis has been performed to examine film evaporation on natural convection heat and mass transfer in a vertical pipe. Coupled governing equations for liquid film and induced gas flow were simultaneously solved by the implicit finite difference method. Results for interfacial heat and mass transfer coefficients are specifically presented for ethanol film and water film vaporization. The predicted results indicate that the heat transfer from gas‐liquid interface to the gas flow is predominated by the transport of latent heat in association with film evaporation. The results are also contrasted with those of zero film thickness and show that the assumption of extremely thin film thickness made by Chang et al. [5] and Yan and Lin [19] is only valid for a system with a low liquid Reynolds number Re l1. But as the liquid Reynolds number is high, the assumption becomes inappropriate.  相似文献   

10.
11.
Nanocrystalline Nd2(Zr1 − xSnx)2O7 series solid solutions were prepared by a convenient salt-assisted combustion process using glycine as fuel. The samples were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, Raman spectroscopy, transmission electron microscopy and high-resolution transmission electron microscopy. The results showed the Zr ion can be partially replaced by Sn ion. The partial substituted products were still single-phase solid solutions and the crystal form remained unchanged. TEM images reveal that the products are composed of well-dispersed square-shaped nanocrystals. The method provides a convenient and low-cost route for the synthesis of nanostructures of oxide materials.  相似文献   

12.
超临界二氧化碳微细管内冷却换热研究   总被引:1,自引:1,他引:0  
对超临界二氧化碳在微细竖直圆管内冷却条件下的对流换热进行了数值模拟研究,分析了不同管径、进口雷诺数及不同的热流率对超临界二氧化碳对流换热的影响,考察管内局部流体温度、湍动能、湍流雷诺数的变化。湍流模型采用低雷诺数YS模型。研究表明,在临界温度区域比较大的截面,超临界二氧化碳局部传热系数达到最大值,同时管内传热受湍流雷诺数影响较大。  相似文献   

13.
Nanofluids have received much attention since its discovery owing to its enhanced thermal conductivity and heat transfer characteristics which makes them a promising coolant in heat transfer application. In this study, the enhancement in heat transfer of carbon nanotube (CNT) nanofluids under turbulent flow conditions is investigated experimentally. The CNT concentration was varied from 0.051 to 0.085 wt%, respectively. The nanofluid suspension was stabilised by gum arabic through a process of homogenisation and water bath sonication at 25 °C. The flow rate of cold fluid (water) is varied from 1.7 to 3 L/min, while flow rate of the hot fluid is varied between 2 and 3.5 L/min. Thermal conductivity, density, and viscosity of the nanofluids are also measured as a function of temperature and CNT concentration. The experimental results were validated with theoretical correlations for turbulent flow available in the literature. Results showed an enhancement in heat transfer between 9% and 67% as a function of temperature and CNT concentration.  相似文献   

14.
The Nusselt number variations of supercritical carbon dioxide during in-tube cooling are presented and discussed. Using data presented in this paper as well as prior publications, a new correlation to predict the heat transfer coefficient of supercritical carbon dioxide during in-tube cooling has been developed. The new correlation is presented in this paper. It is based on mean Nusselt numbers that are calculated using the thermophysical properties at the wall and the bulk temperatures, respectively. It is seen that the majority of the numerical and experimental values are within ±20% of the values predicted by the new correlation.  相似文献   

15.
Off-gas measurements were conducted at industrial electric arc furnaces (EAF) in Germany in order to investigate the interrelation of NO x emission with installed plant equipment (e.g. gas burner) and process data (e.g. carbon input). Off-gas data monitor rapid changes in off-gas composition, temperature, and volume flow rates of air into the furnace indicating the transient state batch process of scrap melting. From the measurements two distinct sources of NO x emission are clearly distinguished: (1) NO x formation in the electric arc plasma during the start-up period of the melting process in an oxidizing furnace atmosphere after the charging of the furnace. (2) NO x formation from post-combustion of CO/CO2/H2 gas with air inside and outside the furnace. Whereas the contribution from arc ignition is similar for different types of EAFs, other contributions depend on furnace equipment and operation, e.g. gas burners, use of air as carrier medium for carbon or dust injection, air-tightness of furnace, and parameters of off-gas extraction by EAF dedusting system. The positive effect of the minimum volume flow rate of air into the furnace by controlled off-gas extraction to total NO x emission is shown.  相似文献   

16.
Numerical solutions have been obtained for the system of equations of momentum, heat and mass transfer describing the absorption of a refrigerant vapour from a Taylor bubble into the refrigerant-absorbent solution film around the bubble. The numerical results are compared with Nusselt's solution of the energy equation and with the penetration theory solution of the mass diffusion variation. Experimental data have been collected in vertical tubular absorbers in the slug flow region with the systems ammonia-lithium nitrate and ammonia-sodium thiocyanate. Four different absorber tubes have been tested with internal diameters of 10, 15, 20, and 25 mm. These data are compared with the numerical and theoretical results. The effect of the bubble nose on mass transfer is studied. Typical temperature profiles during the absorption process in absorption cooling/heating systems are shown.  相似文献   

17.
The effect of storage on flow and heat transfer characteristics of ice slurry was investigated experimentally. After ice slurry had been stored in the storage tank, variations in ice particle size were measured using a microscope, and diameter distribution and average diameter determined. The ice packing factor, Reynolds number and storage time were varied as experimental parameters. The pressure drop and heat transfer coefficient were measured when the ice slurry flowed in the horizontal tube. For laminar flow, the ratios of pipe friction and heat transfer coefficient decreased with storage time. For more than 12 h storage time, the ice slurry could not flow in the tube. The adhesion between ice particles seemed to cause a blockage in the tube. On the other hand, for turbulent flow, the pipe friction and ice slurry heat transfer coefficients were similar to that of the ethanol solution, and the storage effect was insignificant.  相似文献   

18.
Characteristics and catalytic properties of a series of carbon-based catalysts (CBCs) produced from paper mill sludge were evaluated. The major processes involved in the production of the catalysts were chemical activation, impregnation, pyrolysis, and post pyrolysis rinsing. The porous structure, catalytic activity and thermostability of the catalysts were tailored during the production stage by introducing hetero-atoms (zinc chloride, and ferric nitrate) in the carbon structure. Characterization of the produced CBCs included determination of the surface area, pore size, and pore size distribution (PSD) from standard N2-adsorption isotherm data. The extent of graphitization and the presence of metal crystals were identified from X-ray diffraction (XRD). The limit of the catalyst gasification was estimated from thermogravimetric analysis (TGA) conducted in an oxidized environment. The NOx reduction capability of the produced catalysts was evaluated in the presence of carbon monoxide using a fixed bed reactor. The reaction temperature ranged from 300 to 500°C. It was shown that paper mill sludge is an excellent precursor for the production of CBCs with NOx removal capability of 66–94%. The catalytic capability of the produced CBCs varied according to the method of production, catalyst surface properties (surface area, pore structure, PSD), metal composition and reaction temperature. The highest NOx removal capacity was observed for the catalytic reactions carried out at 400°C. The mesoporous catalyst produced with a Zn:Fe molar ratio of 1:0.5 exhibited the maximum NOx removal catalytic activity of 94%.  相似文献   

19.
采用CFD数值模拟技术,研究了多孔式翅片传热与流阻特性,重点分析了不同孔口因素对多孔式翅片传热与流阻的影响.研究结果表明:随着孔隙率增加,多孔式翅片流阻增大,但其传热并未明显提升.同一孔隙率下,翅片传热与流阻随孔径减少而提升.开孔方式呈错列布置的流阻与传热性能高于孔口呈并行布置的情况.开孔结构对多孔式翅片传热性能影响较...  相似文献   

20.
Single-phase heat transfer and pressure drop characteristics of a commercially available internally micro-finned tube with a nominal outside diameter of 7.94 mm were studied. Experiments were conducted in a double pipe heat exchanger with water as the cooling as well as the heating fluid for six sets of runs. The pressure drop data were collected under isothermal conditions. Data were taken for turbulent flow with 3300 ≤ Re ≤ 22,500 and 2.9 ≤ Pr ≤ 4.7. The heat transfer data were correlated by a Dittus–Boelter type correlation, while the pressure drop data were correlated by a Blasius type correlation. The correlation predicted values for both the Nusselt number and the friction factors were compared with other studies. It was found that the Nusselt numbers obtained from the present correlation fall in the middle region between the Copetti et al. and the Gnielinski smooth tube correlation predicted Nusselt number values. For pressure drop results, the present correlation predicted friction factors values were nearly double that of the Blasius smooth tube correlation predicted friction factors. It was also found that the rough tube Gnielinski and Haaland correlations can be used as a good approximation to predict the finned tube Nusselt number and ffriction factor, respectively, in the tested Reynolds number range.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号