首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
反应烧结氮化硅-碳化硅复合材料的氮化机理   总被引:1,自引:0,他引:1  
为分析反应烧结氮化硅结合碳化硅(Si3N4-SiC)材料中微观结构和氮化硅分布不均匀的原因,对在隔焰燃气氮化梭式窑中应用反应烧结氮化方法制备的氮化硅结合碳化硅复合材料进行结构研究和热力学分析。结果表明:材料中的氮化硅以纤维状和柱状两种形状存在。Si的氮化机理为:Si首先被氧化成气态SiO,降低了体系的氧分压,当氧分压足够低时,Si与N2直接反应形成柱状Si3N4,气态SiO亦可与N2反应生成氮化硅,这是一个气-气反应,故生成的Si3N4为纤维状。氮化反应前SiO主要分布于材料孔隙和表面,因而生成的氮化硅分布不均匀,导致了反应烧结Si3N4-SiC材料结构的不均匀。  相似文献   

2.
以硅铁合金(FeSi75)为原料,分别采用闪速燃烧合成工艺和自蔓延高温合成工艺制备氮化硅铁样品,利用X射线衍射仪和扫描电镜对样品进行了表征,探讨了合成工艺对氮化硅铁物相和显微结构的影响。采用闪速燃烧工艺合成的氮化硅铁相组成为β-Si3N4,α-Si3N4,Fe3Si和少量SiO2;而采用自蔓延高温合成的氮化硅铁由β-Si3N4,α-Si3N4,Fe3Si和Si2N2O组成。闪速燃烧合成的氮化硅铁样品中存在大量长径比较高的柱状氮化硅晶体,Fe3Si位于柱状结晶所包裹材料的内部;自蔓延高温合成的氮化硅铁显微结构为致密的氮化硅块体,在块体表面覆盖有氧氮化硅膜,块体的间隙存在晶形细小的氮化硅晶体,含铁组分镶嵌在致密的块体中。闪速燃烧合成的氮化硅铁结构疏松,活性较强;自蔓延高温合成的氮化硅铁结构致密,性质稳定。  相似文献   

3.
硅铁粉粒度对合成氮化硅铁的影响   总被引:1,自引:0,他引:1  
采用FeSi75为原料,利用直接氮化合成法制备了氮化硅铁粉末,研究了中位径(d50)分别为13.41μm、8.023μm和5.229μm的3种硅铁粉分别在1150℃、1250℃和1350℃保温9h处理后的氮化规律。借助XRD、SEM等测试手段测定和观察了产物的物相组成和显微形貌。结果表明:较细的硅铁粉(d50=5.229μm)氮化时,反应快速、剧烈,导致烧结严重,氮化效果差,而较粗硅铁粉(d50=13.41μm)氮化效果较好;较细硅铁粉氮化后易于形成须状、纤维状和柱状氮化硅晶体,较粗硅铁粉氮化后易于形成球状氮化硅团聚体。制备的氮化硅铁中有大量充满氮化硅的孔洞,产物中的Fe3Si与FexSi被其包围,这种结构有利于体现氮化硅铁的优异性能。  相似文献   

4.
埋碳条件下氮化硅铁-刚玉复合材料的反应机理   总被引:1,自引:0,他引:1  
以热固型酚醛树脂为结合剂,在刚玉中分别引入质量分数为0、5%、10%、15%、20%、25%的氮化硅铁,制备出氮化硅铁-刚玉复合材料。结果表明:样品在埋碳气氛下于1 450℃保温24h处理后,常温耐压强度增加;添加氮化硅铁质量分数为15%的样品,耐压强度达到132MPa。氮化硅铁中部分Fe3Si转化成为Fe4N;热固酚醛树脂结合剂中部分残碳与氮气反应生成C3N4;氮化硅与刚玉发生固溶,生成Si5AlON7(Z=1)。氮化硅铁中的氮化硅与刚玉固溶形成Sialon。新形成的物相(Fe4N、C3N4和Si5AlON7)改善了样品的性能。  相似文献   

5.
铁元素在氮化硅铁中的存在状态   总被引:9,自引:0,他引:9  
用化学分析、XRD,SEM,EDS等检测手段,首次对闪速燃烧工艺制备的新型合成原料——氮化硅铁(Fe-Si3N4)中铁元素的存在状态进行了研究。结果表明:以小于0.074mm的FeSi75颗粒为原料制备氮化硅铁时,FeSi75颗粒表面的硅原子氮化形成氮化硅包覆层,硅铁受热熔化;随着硅的持续氮化减少,铁含量相对增加,硅的氮化难度加大;最后,铁以Fe3Si和α-Fe两种形式保留下来,并且主要分布于氮化硅粉体颗粒的内部,并用热力学进行了分析。  相似文献   

6.
硅铁闪速燃烧合成氮化硅铁   总被引:3,自引:1,他引:3  
利用闪速燃烧合成新技术 ,以粒度≤ 0 .0 88mm的FeSi75硅铁细粉为原料 ,在 0 .2MPa的低氮气压力与 14 0 0℃的燃烧温度条件下 ,制备了细蜂窝状氮化硅铁。XRD和SEM分析结果表明 ,这种氮化硅铁主要由短柱状β Si3N4 相和Si3Fe相组成 ,其结构特征是以Si3Fe形成核心 ,并被Si3N4 包裹。同时 ,还用热力学原理探讨了由硅铁闪速燃烧合成氮化硅铁的工艺条件、形成产物的形式、反应的中间产物和残留金属的形态。热力学研究结论和实验检测结果相一致 ,从而在理论上阐明了闪速燃烧合成是制备氮化硅铁的一种理想工艺  相似文献   

7.
以硅粉和氮化硅铁颗粒为原料,经高纯氮气气氛下烧结,制备出氮化硅/氮化硅铁复合材料。将氮化硅/氮化硅铁复合材料试样分别在1 500、1 600、1 700℃氮气气氛下重烧,探究其高温稳定性。结果表明:当重烧温度为1 500℃时试样中存在的物相有β-Si_3N_4、α-Si_3N_4、Si_2N_2O、SiC以及Fe3Si;当重烧温度达到1 600℃时,β-Si_3N_4含量增加,Fe_3Si、Fe_5Si_3、FeSi_3种硅铁合金共存,α-Si_3N_4、Si_2N_2O消失;当重烧温度上升到1 700℃时,β-Si_3N_4含量显著下降并重新出现α-Si_3N_4,Fe_5Si_3和FeSi相共存,Fe_3Si相消失。结合热力学计算推断反应机理为:当重烧温度从1 500℃上升到1 600℃时,α-Si_3N_4、Fe–Si熔体中的Si以及Si_2N_2O均向β-Si_3N_4转变,导致β-Si_3N_4含量增加。当重烧温度上升到1 700℃过程中,熔融硅铁的存在加速了Si_3N_4的分解,导致β-Si_3N_4含量减少;试样冷却过程中,Si(l)、Si(g)将重新氮化形成氮化硅,使α-Si_3N_4重新出现。SiC在较高的温度下比Si_3N_4稳定,其反应的C源为结合剂中的残C,以及气氛中的CO。随温度升高,复合材料中Fe–Si合金的稳定顺序依次为:Fe3Si→Fe_5Si_3→FeSi。  相似文献   

8.
氮化硅铁在Al2O3-SiC-C质铁沟浇注料中的防氧化行为   总被引:2,自引:1,他引:1  
将Al2O3-SiC-C系铁沟浇注料及分别添加8%(质量分数)氮化硅、氮化硅铁的浇注料试样在空气中进行1500℃3 h热处理后,分别对氧化层进行形貌(SEM)及能谱分析(EDS),并结合热力学分析了氮化硅铁的防氧化行为高温氧化气氛下,表面氮化硅铁中的Si3N4首先氧化生成SiO2,构成氧化层的主体;随着铁相材料的氧化,形成的氧化铁不但降低了氧化层的熔点,而且降低了熔体的粘度,增进熔体在材料表面上的润湿性及流动性,形成覆盖于材料表面的氧化层而阻止碳素氧化,使其具有比纯氮化硅更好的防氧化性能;另外,由于氮化硅铁在Al2O3-SiC-C系材料中加入量少,而且试样内部的铁不是以氧化铁形式存在的,故对材料高温使用性能的影响不大.  相似文献   

9.
以闪速燃烧法合成的不同粒度的氮化硅铁颗粒(w(Si)=48.76%,w(N)=30.65%,w(Fe)=14.15%,w(O)=2.2%,w(Al)=0.8%)作为骨料,以粒度≤0.088 mm的氮化硅铁粉和Si粉(w(Si)=98.22%,w(Al)=0.15%)作为细粉,经混料、困料、成型、干燥和1 450℃保温24 h氮化烧成等工艺,制备了以Si_3N_4为主晶相的新型氮化硅质耐火材料。检测结果表明:所制备试样的显气孔率为29.2%,体积密度为2.39g·cm~(- 3),常温耐压强度为151 MPa,常温抗折强度为40.3 MPa,1 400℃高温抗折强度为12.2 MPa;其物相组成(w)为:β-Si_3N_472.03%,α-Si_3N_49.20%,Si_2N_2O 6.23%,Fe3Si 11.60%,Si O_20.94%。在高温条件下,随着体系中氧分压的不断降低,絮状的Si_2N_2O和Si_3N_4结合相主要由体系气相组分中的Si O、Si蒸气与N2、O_2反应形成。  相似文献   

10.
以FeSi75和SiC为主要原料,直接氮化反应烧结,成功制备了综合性能优异的Fe-Si3N4-SiC复合材料。对硅铁氮化进行了化学热力学计算,并分析了产物的物相组成及显微结构。结果表明,氮化产物有α-Si3N4、β-Si3N4,呈纤维状、柱状;维持一定低氧分压对氮化过程有利;产物中存在大量细分散的硅铁金属间化合物,硅铁不能完全氮化,过多Fe阻碍Si的氮化,Fe以Fe3Si形式存在。  相似文献   

11.
为了研究高温条件下Al2O3-C体系中氮化硅铁的状态,以闪速燃烧合成氮化硅铁、炭黑、刚玉粉为原料,将试样在高温炉中分别加热至1 450、1 500、1 600℃保温5 h,急速水冷后,对其进行XRD和显微结构分析。结果表明:1 450℃烧后试样的物相包含β-Si3N4、α-Si3N4、α-Al2O3和Fe3Si;1 500℃烧后试样的物相为β-Si3N4、SiC、α-Al2O3和Fe3Si;1 600℃烧后试样中Si3N4大部分转变为SiC,其他物相未发生变化。在升温过程中,氮化硅逐渐转化为碳化硅,材料结构致密。  相似文献   

12.
硅粉生坯经过初次氮化制得硅–氮化硅–氧氮化硅体系的试样,分别于1 500和1 600℃氮气气氛下进行重烧实验,研究了高温稳定性。结果表明:在Si_2N_2O(s)与Si(l)两相接触的界面处,两者反应生成Si_3N_4(s)和介稳态SiO(g)。1 500℃重烧时体系氧分压[p(O_2)]处于Si_2N_2O相稳定存在的区间,故1 500℃重烧试样中Si_2N_2O相含量高;1 600℃重烧时体系p(O_2)小于Si_3N_4相能够稳定存在的临界值,Si(l)直接氮化生成Si_3N_4(s),故1 600℃重烧试样中β-Si_3N_4相是主要物相。体系中的SiO(g)与CO(g)反应生成纤维状SiC,由于SiO分压[p(SiO)]与温度T负相关,因此1 500℃重烧试样中SiC相的含量高于1 600℃重烧试样的。试样随炉冷却过程中,部分介稳态SiO(g)会与N2(g)反应生成α-Si_3N_4(s)。  相似文献   

13.
高铝矾土-硅粉氮化合成SiAlON的过程研究   总被引:6,自引:2,他引:4  
侯新梅  钟香崇 《耐火材料》2005,39(5):333-336
分别以w(Al2O3)为68.08%和45.56%的两种高铝矾土及硅粉为原料,按合成SiAlON的理论配比配料(Si粉过量5%),成型后在流动N2(流量为0.06~0.1m3.h-1)中进行热重分析,同时测定试样在不同温度(900~1500℃)保温6h后的质量变化,并分析氮化后试样的物相变化,从而探讨该试样的氮化过程及其机理。结果表明,高铝矾土-硅粉试样在流动N2中的氮化反应过程可大致分为3个阶段:1)Si粉氮化阶段(900~1200℃),Si粉氮化生成Si3N4和Si2N2O;2)SiAlON形成阶段(1300~1400℃),生成O’-SiAlON和β-SiAlON;3)β-SiAlON的生长发育阶段(1450~1500℃),部分O’-SiAlON转化为β-SiAlON,Al2O3在β-SiAlON中的固溶度增加。  相似文献   

14.
利用XRD、SEM和EDAX对在梭式氮化窑中使用1年后的反应烧结Si3N4-SiC匣钵砖内外侧进行了分析。结果表明:在匣钵外侧(氧化气氛),匣钵砖表面12 mm厚的区域呈完全氧化状态,主要氧化产物是SiO2;紧随其后的12~20 mm区域呈部分氧化状态,氧化产物主要为Si2N2O及少量SiO2;20 mm以后区域无明显氧化特征。在匣钵内侧(氮气气氛),匣钵砖表面出现了约0.2 mm厚的氧化层,主要氧化产物是SiO2,该SiO2可能是由气态SiO氧化形成的,而气态SiO主要来自SiC的氧化及氮化过程中形成的气态SiO;从显微结构可以看出,SiC颗粒表面氧化明显。  相似文献   

15.
以微米级氮化硅铁为原料、Al_2O_3–Y_2O_3为烧结助剂,采用气压烧结制备氮化硅铁复相陶瓷。通过X射线衍射和扫描电子显微镜对试样的物相组成和显微结构进行了表征,研究了烧结温度对氮化硅铁复相陶瓷成分、显微结构和力学性能的影响。结果表明:烧结温度对于氮化硅铁陶瓷的显微结构和力学性能具有显著影响。随着烧结温度的升高,样品致密度、抗弯强度、断裂韧性先增大后降低,在1 770℃时均达到最大值,密度、抗弯强度和断裂韧性分别达到3.31 g/cm~3、435 MPa和6.97 MPa?m~(1/2)。在1 770℃以下时,陶瓷样品中主晶相为长柱状的β-Si3N4,晶粒彼此间结合紧密,陶瓷气孔率较低。温度继续升高,含铁相和氮化硅发生反应,气孔率增大,抗弯强度和断裂韧性开始下降。如果进一步提高硅铁的氮化率,采用游离硅低、铁含量低及纯度较高的氮化硅铁粉末制备氮化硅铁陶瓷,材料的性能有望得到进一步的提高。  相似文献   

16.
将硅灰(w(SiO2)=94.5%,平均粒度0.08μm)和氮化硅(粒度≤0.074mm)按1:1质量比混合后成型,在空气中埋炭条件下分别经1300℃、1450℃、1500℃、1550℃、1600℃处理3h后水冷,对其显微结构及物相进行了分析。结果表明:在1550℃以上,以硅灰和氮化硅为原料反应生成Si2N2O比较明显,氮化硅颗粒的边角变得圆滑,而且分布在含Si2N2O的连续胶结相中,形成胶结相包裹Si3N4的致密结构;1500℃以下,氮化硅仍然棱角分明,基本上未形成Si2N2O,只是硅灰中的SiO2析晶,析晶比较显著的温度为1300℃。  相似文献   

17.
以高铝矾土和氮化硅为主原料,二氧化硅微粉、高铝水泥、α-Al2O3微粉等为辅助原料,Si粉为添加剂,外加定量的水和分散剂配制成70%(质量分数,下同)高铝矾土和10%氮化硅的矾土-氮化硅浇注料,并利用回转抗渣试验研究了不添加与外加2%和4%的Si粉对矾土-氮化硅浇注料抗高炉渣(碱度为1.3)侵蚀性能的影响。结果表明,添加Si粉明显改善其抗侵蚀性能,而且随添加量的增加,侵蚀指数显著降低。分析认为:1)矾土-氮化硅材料中非氧化物材料在表层的氧化和相继形成的SiO(g)在表层的沉积,使表面形成致密层,使材料具有"自阻碍氧化"能力;2)Si3N4氧化时,不论是生成SiO2还是SiO气体,均伴随着N2的生成和逸出,不利于材料表层致密度的提高;3)Si的存在不仅增加SiO的生成量,而且消除了N2的生成和排出,大大提高了表层的致密度,显著改善了复合材料的"自阻碍氧化"能力和抗渣铁侵蚀性能。  相似文献   

18.
以碳化硅(SiC)、硅铁(FeSi)粉、硅(Si)粉为主要原料,在氮气气氛下1380℃保温5h制得氮化硅结合碳化硅制品,研究了硅铁粉加入量对试样常温力学性能的影响.结果表明:硅铁粉引入量<2.0%时,由于Fe促进了Si的氮化反应,随着硅铁粉增加,制品致密化程度增加,常温耐压强度增大;但当硅铁粉>2.0%时,可能由于硅铁粉催化加剧,局部硅粉温度过高,造成流硅现象,使制品力学性能下降.  相似文献   

19.
以硅粉为原料,Fe和尿素作为添加剂,用直接氮化法制备氮化硅。经XRD和SEM分析,结果表明:在1350℃/10h的氮化条件下,所制备的Si3N4以α相为主,颗粒尺寸大约在1.8~4.5μm范围,平均尺寸为3.3μm。添加剂Fe和尿素对硅粉的氮化有一定的促进作用。  相似文献   

20.
在采用水基湿法浇注成型制备反应烧结Si3N4结合Si C材料时,为抑制Si粉原料的水解,首先将Si粉经600、700、800和850℃保温5 h氧化预处理,并与未处理Si粉一起分别制成水基浆料,研究了氧化预处理温度对Si粉在水中的流变性、水解反应的影响;然后将15%(w)的未处理或预氧化后的Si粉与85%(w)的Si C颗粒和细粉加水搅匀并浇注成型后,在氮化炉中经1 450℃保温3 h氮化烧成Si3N4结合Si C试样,研究氧化预处理温度对Si粉氮化反应的影响。研究表明:1)随着氧化预处理温度的升高,Si粉在不含分散剂的水基浆料中的黏度逐渐增大,在含有分散剂的浆料中黏度逐渐降低;2)氧化预处理温度越高,Si粉水解程度越弱;3)氧化预处理温度≤700℃时,对Si粉氮化反应影响不大;氧化预处理温度为800℃时,Si粉氮化反应受阻,试样中有残留硅存在。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号