首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The crystal structure of the mutant deoxyhemoglobin in which the beta-globin Val67(E11) has been replaced with threonine [Fronticelli et al. (1993) Biochemistry 32, 1235-1242] has been determined at 2.2 A resolution. Prior to the crystal structure determination, molecular modeling indicated that the Thr67(E11) side chain hydroxyl group in the distal beta-heme pocket forms a hydrogen bond with the backbone carbonyl of His63(E7) and is within hydrogen-bonding distance of the N delta of His63(E7). The mutant crystal structure indicates only small changes in conformation in the vicinity of the E11 mutation confirming the molecular modeling predictions. Comparison of the structures of the mutant beta-subunits and recombinant porcine myoglobin with the identical mutation [Cameron et al. (1993) Biochemistry 32, 13061-13070] indicates similar conformations of residues in the distal heme pocket, but there is no water molecule associated with either of the threonines of the beta-subunits. The introduction of threonine into the distal heme pocket, despite having only small perturbations in the local structure, has a marked affect on the interaction with ligands. In the oxy derivative there is a 2-fold decrease in O2 affinity [Fronticelli et al. (1993) Biochemistry 32, 1235-1242], and the rate of autoxidation is increased by 2 orders of magnitude. In the CO derivative the IR spectrum shows modifications with respect to that of normal human hemoglobin, suggesting the presence of multiple CO conformers. In the nitrosyl derivative an interaction with the O gamma atom of Thr67(E11) is probably responsible for the 10-fold increase in the rate of NO release from the beta-subunits. In the aquomet derivative there is a 6-fold decrease in the rate of hemin dissociation suggesting an interaction of the Fe-coordinated water with the O gamma of Thr67(E11).  相似文献   

2.
The distal His in peroxidases forms a hydrogen bond with the adjacent Asn, which is highly conserved among many plant and fungal peroxidases. Our previous work [Nagano, S., Tanaka, M., Ishimori, K., Watanabe, Y., & Morishima, I. (1996) Biochemistry 35, 14251-14258] has revealed that the replacement of Asn70 in horseradish peroxidase C (HRP) by Val (N70V) and Asp (N70D) discourages the oxidation activity for guaiacol, and the elementary reaction rate constants for the mutants was decreased by 10-15-fold. In order to delineate the structure-function relationship of the His-Asn couple in peroxidase activity, heme environmental structures of the HRP mutant, N70D, were investigated by CD, 1H NMR, and IR spectroscopies as well as Fe2+/Fe3+ redox potential measurements. While N70D mutant exhibited quite similar CD spectra and redox potential to those of native enzyme, the paramagnetic NMR spectrum clearly showed that the hydrogen bond between the distal His and Asp70 is not formed in the mutant. The disappearance of the splitting in the 1H NMR signal of heme peripheral 8-methyl group observed in 50% H2O/50% D2O solution of N70D-CN suggests that the hydrogen bond between the distal His and heme-bound cyanide is also disrupted by the mutation, which was supported by the low C-N vibration frequency and large dissociation constant of the heme-bound cyanide in the mutant. Together with the results from various spectroscopies and redox potentials, we can conclude that the improper positioning of the distal His induced the cleavages of the hydrogen bonds around the distal His, resulting in the substantial decrease of the catalytic activity without large structural alterations of the enzyme. The His-Asn hydrogen bond in the distal site of peroxidases, therefore, is essential for the catalytic activity by controlling the precise location of the distal His.  相似文献   

3.
The cytochrome b subunit of the ubiquinol:cytochrome c oxidoreductase (the bc1 complex) contains two heme prosthetic groups, cytochrome bL and cytochrome bH. In addition, this subunit also provides major elements of the quinol oxidation site (Qo) and a separate quinone reductase site (Qi), which are thought to be located on opposite sides of the membrane. Site-directed mutagenesis has been used to explore the role(s) of specific amino acid residues in this subunit from the photosynthetic bacterium Rhodobacter sphaeroides. Previous work identified five residues, Gly48 (Gly33), Ala52 (Gly37), His217 (His202), Lys251 (Lys228), and Asp252 (Asp229), as being either at or near the quinone reductase site (the residue numbers in parentheses designate the equivalent positions in the yeast mitochondrial enzyme). These residues are predicted to be near the cytoplasmic boundaries of transmembrane helices: helix A (G48, A52), helix D (H217), or helix E (K251, D252). In the current work, the importance of two additional highly conserved residues, which are also predicted to be near the cytoplasmic boundaries of transmembrane helices, is explored by site-directed mutagenesis. R114 (helix B) has been substituted with K, Q, and A, and W129 (helix C) has been changed to A and F. The results suggest that a positively charged residue at position 114 is important. The R114K mutation causes only subtle effects, which appear to be localized to cytochrome bH and the quinone reductase site. In contrast, R114Q is not assembled, and R114A, although partially assembled, is nonfunctional and appears to have a very low amount of cytochrome b associated with the complex. Both mutants at position 129 (W129A and W129F) are able to support the photosynthetic growth of the organism, but show abnormal characteristics. The defects associated with the W129A mutation appear to be primarily associated with the quinone reductase site and cytochrome bH, whereas the W129F mutation appears to result in more global defects that also perturb the cytochrome bL locus. The results are consistent with the placement of residues R114 and W129 near the cytoplasmic side of the membrane, but suggest that these residues are important for the assembly and overall stability of the complex.  相似文献   

4.
Mutants of cytochrome b5 were designed to achieve reorientation of individual axial imidazole ligands. The orientation of the axial ligand planes is thought to modulate the reduction potential of bis(imidazole) axially ligated heme proteins. The A67V mutation achieved this goal through the substitution of a bulkier, hydrophobic ligand for a residue, in the sterically hindered hydrophobic heme binding pocket. Solution structures of mutant and wild-type proteins in the region of the mutation were calculated using restraints obtained from 1H and 15N 2D homonuclear and heteronuclear NMR spectra and 1H-15N 3D heteronuclear NMR spectra. More than 10 restraints per residue were used in the refinement of both structures. Average local rmsd for 20 refined structures was 0.30 A for the wild-type structure and 0.38 A for the A67V mutant. The transfer of amide proton resonance assignments from wild-type to the mutant protein was achieved through overlays of 15N-1H heteronuclear correlation spectra of the reduced proteins. Side chain assignments and sequential assignments were established using conventional assignment strategies. Calculation of the orientation of the components of the anisotropic paramagnetic susceptibility tensor, using methods similar to procedures applied to the wild-type protein, shows that the orientation of the in-plane components are identical in the wild-type and mutant proteins. However, the orientation of the z-component of the susceptibility tensor calculated for the mutant protein differs by 17 degrees for the A-form and by 11 degrees for the B-form from the orientation calculated for the wild-type protein. The rotation of the z-component of the susceptibility tensor (toward the delta meso proton) is in the same direction and is of the same magnitude as the rotation of the H63 imidazole ring induced by mutation.  相似文献   

5.
BACKGROUND: Long-distance electron-transfer (ET) reactions through proteins are involved in a great many biochemical processes; however, the way in which the protein structure influences the rates of these reactions is not well understood. We have therefore measured the rates of intramolecular ET from the ferroheme to a bis(2,2'-bipyridine)imidazoleruthenium(III) acceptor at histidine 39 or 54 in derivatives of yeast iso-1-cytochrome c, and studied the effect of an asparagine to isoleucine mutation at position 52, a residue situated between the heme and the electron acceptor. RESULTS: The Fe2+-->Ru3+ rate constants demonstrate that residue 52 affects ET from the heme to His54 (Ile52 > Asn52), but not to His39 (Ile52 = Asn52). The enhanced Fe(2+)-Ru3+(His54) electronic coupling for the N52I/K54H protein is in good agreement with sigma-tunneling calculations, which predict the length of the ET pathways between the heme and His54. CONCLUSION: The structure of the intervening medium between the heme and electron acceptors at the protein surface influences the donor-acceptor couplings in cytochrome c.  相似文献   

6.
Nitrate transport in Aspergillus nidulans was dependent upon a consistent proton motive force (delta p) across the cell membrane which was maintained in a range of 105 (+/- 6.7) to 131 (+/- 3.4) mV over an external pH span of 5.5 to 7.5. The membrane potential (delta psi) measured by uptake of [3H]-tetra-phenylphosphonium bromide and the transmembrane pH difference (delta pH) measured by the distribution of 3H2O and [14C]- salicylic acid were used to compute the delta p present during transport of nitrate. Energy dependent accumulation of nitrate was measured in actively assimilating and tungstate inhibited cells. A delta G for nitrate of 14 kJ mol-1 was computed from the results. Cells induced for nitrate transport maintained internal nitrate levels of 6 to 8 mM based on an internal volume of 2.6 microliters/mg dry wt as determined by a conventional dual label procedure. A fivefold higher level of cellular nitrate was observed in tungstate inhibited cells. Nitrate accumulation was dependent upon a H+ gradient which was dissipated by treatment with 2-butanol, the ionophores valinomycin and gramicidin and the proton conductors carbonyl cyanide m-chlorophenyl hydrazone and N,N'-dicyclo-hexylcarbodiimide. Significant ATP and nitrate efflux occurred in cells treated with the above agents. The results suggest that nitrate is transported by symport with H+ on a carrier which is functionally linked to a H+ ATPase pump.  相似文献   

7.
The heme oxygenase (HO) system degrades heme to biliverdin and CO and releases chelated iron. In the primary sequence of the constitutive form, HO-2, there are three potential heme binding sites: two heme regulatory motifs (HRMs) with the absolutely conserved Cys-Pro pair, and a conserved 24-residue heme catalytic pocket with a histidine residue, His151 in rat HO-2. The visible and pyridine hemochromogen spectra suggest that the Escherichia coli expressed purified HO-2 is a hemoprotein. The absorption spectrum, heme fluorescence quenching, and heme titration analysis of the wild-type protein versus those of purified double cysteine mutant (Cys264/Cys281 --> Ala/Ala) suggest a role of the HRMs in heme binding. While the His151 --> Ala mutation inactivates HO-2, Cys264 --> Ala and Cys281 --> Ala mutations individually or together (HO-2 mut) do not decrease HO activity. Also, Pro265 --> Ala or Pro282 --> Ala mutation does not alter HO-2 activity. Northern blot analysis of ptk cells indicates that HO-2 mRNA is not regulated by heme. The findings, together with other salient features of HO-2 and the ability of heme-protein complexes to generate oxygen radicals, are consistent with HO-2, like five other HRM-containing proteins, having a regulatory function in the cell.  相似文献   

8.
The ligand binding site of neuropeptide Y (NPY) at the rat Y1 (rY1,) receptor was investigated by construction of mutant receptors and [3H]NPY binding studies. Expression levels of mutant receptors that did not bind [3H]NPY were examined by an immunological method. The single mutations Asp85Asn, Asp85Ala, Asp85Glu and Asp103Ala completely abolished [3H]NPY binding without impairing the membrane expression. The single mutation Asp286Ala completely abolished [3H]NPY binding. Similarly, the double mutation Leu34Arg/Asp199Ala totally abrogated the binding of [3H]NPY, whereas the single mutations Leu34Arg and Asp199Ala decreased the binding of [3H]NPY 2.7- and 5.2-fold, respectively. The mutants Leu34Glu, Pro35His as well as Asp193Ala only slightly affected [3H]NPY binding. A receptor with a deletion of the segment Asn2-Glu20 or with simultaneous mutations of the three putative N-terminal glycosylation sites, displayed no detectable [3H]NPY binding, due to abolished expression of the receptor at the cell surface. Taken together, these results suggest that amino acids in the N-terminal part as well as in the first and second extracellular loops are important for binding of NPY, and that Asp85 in transmembrane helix 2 is pivotal to a proper functioning of the receptor. Moreover, these studies suggest that the putative glycosylation sites in the N-terminal part are crucial for correct expression of the rY1 receptor at the cell surface.  相似文献   

9.
Crystal structures of the protease of human immunodeficiency virus type 1 (HIV-1) and two mutant proteases, V82D and V82N, have been determined. In all three cases the enzyme forms a complex with the peptidic inhibitor U-89360E. All structures have been determined to 2.3 A resolution and have satisfactory agreement factors: 0.173 for wild type, 0.175 for V82D, and 0.182 for V82N. Comparison of the three crystal structures provides explanations which are consistent with the known kinetic properties of these mutant enzymes with the U-89360E inhibitor [Lin, Y., Lin, X., Hong, L., Foundling, S., Heinrikson, R. L., Thaisrivongs, S., Leelamanit, W., Raterman, D., Shah, M., Dunn, B.M., & Tang, J. (1995) Biochemistry 34, 1143-1152]. Unfavorable van der Waals interactions between the inhibitor and the mutated side chains at position 82 are consistent with diminished affinity for the inhibitor by the mutant enzymes. If a mutation is potentially resistant to an inhibitor, the mutant enzyme should not only have an increased Ki for the inhibitor but should also preserve considerable catalytic capability. The V82D mutant possesses these qualities. In the V82D crystal structure, a water molecule, which connects the protease flap to the inhibitor, is missing or of low occupancy. Absence of this bridge may be important in determining catalytic capability. Moreover, mutation at position 82 induces change in two polypeptide backbone regions, 35-41 and 67-68, which may be related to protease flap mobility.  相似文献   

10.
In cytochrome c oxidase, a requirement for proton pumping is a tight coupling between electron and proton transfer, which could be accomplished if internal electron-transfer rates were controlled by uptake of protons. During reaction of the fully reduced enzyme with oxygen, concomitant with the "peroxy" to "oxoferryl" transition, internal transfer of the fourth electron from CuA to heme a has the same rate as proton uptake from the bulk solution (8,000 s-1). The question was therefore raised whether the proton uptake controls electron transfer or vice versa. To resolve this question, we have studied a site-specific mutant of the Rhodobacter sphaeroides enzyme in which methionine 263 (SU II), a CuA ligand, was replaced by leucine, which resulted in an increased redox potential of CuA. During reaction of the reduced mutant enzyme with O2, a proton was taken up at the same rate as in the wild-type enzyme (8,000 s-1), whereas electron transfer from CuA to heme a was impaired. Together with results from studies of the EQ(I-286) mutant enzyme, in which both proton uptake and electron transfer from CuA to heme a were blocked, the results from this study show that the CuA --> heme a electron transfer is controlled by the proton uptake and not vice versa. This mechanism prevents further electron transfer to heme a3-CuB before a proton is taken up, which assures a tight coupling of electron transfer to proton pumping.  相似文献   

11.
NMR signals for HisB5 N(delta)H and HisEF5 N(epsilon)H protons of sperm whale and horse apomyoglobins were assigned and compared with the corresponding signals of the holoproteins in terms of pH and temperature dependence behaviors of their shifts and line widths in order to gain insight into structural difference between the apoproteins and the holoproteins. Since these protons are involved in internal hydrogen bonds at the interfaces between the B helix and the GH corner and between the EF corner and the H helix, local structures of the interfaces in these proteins have been inferred from the analyses of these signals. A large difference in the line width of HisEF5 N(epsilon)H proton signal between the apoproteins and the holoproteins strongly suggested that a sizable structural alteration is induced in the EF-H interface by the removal of heme. However, the results for HisB5 N(delta)H proton resonance indicated the absence of a significant structural alteration in the B-GH interface by heme extraction. These results are consistent with the data obtained from mutation [Hughson, F. M. & Baldwin, R. L. (1989) Biochemistry 28, 4415-4422] and amide-proton-exchange kinetic [Hughson, F. M., Wright, P. E. & Baldwin, R. L. (1990) Science 249, 1544-1548] studies, which indicated that the A, B, G and H helices in apomyoglobin maintain the same packing as they do in holoprotein.  相似文献   

12.
Conformational transitions of cytochrome P-450cam following the dissociation of CO from the ferrous heme were investigated by using photoacoustic calorimetry. The effect of substrate association on the acoustic signal was also examined. Results show that the conformational dynamics of cytochrome P-450cam substrate-free protein occur faster than 10 ns, which is the time scale of the instrument response. The enthalpy and volume change for the dissociation reaction are 2.2 kcal mol-1 and 1.8 mL mol-1, respectively. Upon addition of camphor, the reaction is markedly slowed. An intermediate is formed whose lifetime is 130 ns at 17 degrees C. The overall enthalpy and volume changes are -15.9 kcal mol-1 and 10.3 mL mol-1, respectively. These results, together with published transient Raman spectra [Wells, A. V., Pusheng, L., Champion, P. M., Martinis, S. A., & Sligar, S. G. (1992) Biochemistry 31, 4384-4393] suggest that camphor leaves the heme pocket concomitant with the photoinduced expulsion of CO into the solvent and induces a considerable conformational change in the protein.  相似文献   

13.
Chlorinated compounds such as chlorinated ethylenes and ethanes are serious environmental pollutants. In the present study, we examined whether or not a recombinant strain of Saccharomyces cerevisiae that expresses rat liver cytochrome P450 1A2 (P450 1A2) wild-type and mutant proteins can efficiently catalyze oxidative and reductive dehalogenations of trichloroethylene, pentachloroethane, and hexachloroethane. Mutations at putative heme distal and protein surface sites of P450 1A2 greatly enhanced turnover values toward those substrates under both aerobic and anaerobic conditions. For example, a Thr319Ala mutation at the putative heme distal site enhanced the degradation rate of trichloroethylene and pentachloroethane by 2- and 2.7-fold, respectively, under aerobic conditions. The Thr319Ala mutation also strongly facilitated the reaction with hexachloroethane up to 13- and 4.5-fold under aerobic and anaerobic conditions, respectively. The Thr319Ala mutation increased dechlorinated over protonated product ratios by 3-fold as well when either pentachloroethane or hexachloroethane was used as a substrate. A Lys250Leu mutation on the putative protein surface site enhanced the dehalogenation rate of hexachloroethane up to 4.8-fold under anaerobic conditions. In contrast, a Glu318Ala mutation at the putative distal site markedly decreased the activities with trichloroethylene and pentachloroethane substrates under aerobic conditions. Conserved amino acids Thr319 and Glu318 at the heme distal site have been suggested to be important in the O2 activation during monooxidation reactions of P450s. However, the present study indicates that Thr319 is likely to be an inhibitor of dechlorination of trichloroethylene and penta- and hexachloroethanes. The roles of Thr319, Glu318, and Lys250 in the catalysis with chlorinated hydrocarbons are discussed in association with reaction mechanisms.  相似文献   

14.
MurB catalyzes the second committed step in the synthesis of peptidoglycan, a key component of the bacterial cell wall. The crystal structures of both a S229A mutant and wild-type MurB in the presence of the substrate enolpyruvyl-UDP-N-acetylglucosamine were solved and refined at 1.8 A resolution. The single point mutation of residue 229 from serine to alanine eliminated a hydroxyl group which has previously been proposed to play a critical role as a proton donor during the second half-reaction of MurB, namely, reoxidation of FADH2 and reduction of the enolpyruvyl substrate. The mutation also resulted in the loss of the water molecule-hydrogen bonded to the serine hydroxyl in the wild-type structure changing the hydrogen-bonding network with in the active site. Comparison of the wild-type and S229A mutant structures confirms that the dramatic kinetic defect of an approximately 10(7)-fold decrease observed for the Ser 229 Ala mutant in the second half-reaction [Benson, T.E., Walsh, C.T., & Massey, V. (1997) Biochemistry 36, 796-805] is a direct result of the loss of the serine hydroxyl moiety rather than other nonspecific active-site changes or general structural defects.  相似文献   

15.
Solution 1H-NMR studies of the heme cavity were performed for the cyanomet complexes of monomeric hemoglobins III and IV from the insect Chironomus thummi thummi, each of which exhibit marked Bohr effects. The low pH 5, paramagnetic (S = 1/2) derivatives were selected for study because the large dipolar shifts provide improved resolution over diamagnetic forms and allow distinction between the two isomeric heme orientations [Peyton, D. H., La Mar, G. N. & Gersonde, K. (1988) Biochim. Biophys. Acta 954, 82-94]. The crystal structure for the low-pH form of the hemoglobin III derivative, moreover, has been reported and showed that the functionally implicated distal His58 side chain adopts alternative orientation, either in or out of the pocket [Steigemann, W. & Weber, E. (1979) J. Mol. Biol. 127, 309-338]. All heme pocket residues for the low-pH forms of the two hemoglobins were located, at least in part, and positioned in the heme cavity on the basis of nuclear Overhauser effects to the heme and each other, dipolar shifts, and paramagnetic-induced relaxation. The resulting structure yielded the orientation of the major axis of the paramagnetic susceptibility tensor. The heme pocket structure of the cyanomet hemoglobins III and IV were found to be indistinguishable, with both exhibiting a distal His58 oriented solely into the heme cavity and in contact with the ligand, and with two residues, Phe100 and Phe38, exhibiting small but significant displacements in solution relative to hemoglobin III in the crystal.  相似文献   

16.
Two mutants of cytochrome c peroxidase (CCP) are reported which exhibit unique specificities toward oxidation of small substrates. Ala-147 in CCP is located near the delta-meso edge of the heme and along the solvent access channel through which H2O2 is thought to approach the active site. This residue was replaced with Met and Tyr to investigate the hypothesis that small molecule substrates are oxidized at the exposed delta-meso edge of the heme. X-ray crystallographic analyses confirm that the side chains of A147M and A147Y are positioned over the delta-meso heme position and might therefore modify small molecule access to the oxidized heme cofactor. Steady-state kinetic measurements show that cytochrome c oxidation is enhanced 3-fold for A147Y relative to wild type, while small molecule oxidation is altered to varying degrees depending on the substrate and mutant. For example, oxidation of phenols by A147Y is reduced to less than 20% relative to the wild-type enzyme, while Vmax/e for oxidation of other small molecules is less affected by either mutation. However, the "specificity" of aniline oxidation by A147M, i.e., (Vmax/e)/Km, is 43-fold higher than in wild-type enzyme, suggesting that a specific interaction for aniline has been introduced by the mutation. Stopped-flow kinetic data show that the restricted heme access in A147Y or A147M slows the reaction between the enzyme and H202, but not to an extent that it becomes rate limiting for the oxidation of the substrates examined. The rate constant for compound ES formation with A147Y is 2.5 times slower than wild-type CCP. These observations strongly support the suggestion that small molecule oxidations occur at sites on the enzyme distinct from those utilized by cytochrome c and that the specificity of small molecule oxidation can be significantly modulated by manipulating access to the heme edge. The results help to define the role of alternative electron transfer pathways in cytochrome c peroxidase and may have useful applications in improving the specificity of peroxidase with engineered function.  相似文献   

17.
A bifunctional enzyme, fructose-6-phosphate,2-kinase/fructose 2, 6-bisphosphatase (Fru-6-P,2-kinase/Fru-2,6-Pase), catalyzes synthesis and degradation of fructose 2,6-bisphosphate (Fru-2,6-P2). Previously, the rat liver Fru-2,6-Pase reaction (Fru-2,6-P2 --> Fru-6-P + Pi) has been shown to proceed via a phosphoenzyme intermediate with His258 phosphorylated, and mutation of the histidine to alanine resulted in complete loss of activity (Tauler, A., Lin, K., and Pilkis, S. J. (1990) J. Biol. Chem. 265, 15617-15622). In the present study, it is shown that mutation of the corresponding histidine (His256) of the rat testis enzyme decreases activity by less than a factor of 10 with a kcat of 17% compared with the wild type enzyme. Mutation of His390 (in close proximity to His256) to Ala results in a kcat of 12.5% compared with the wild type enzyme. Attempts to detect a phosphohistidine intermediate with the H256A mutant enzyme were unsuccessful, but the phosphoenzyme is detected in the wild type, H390A, R255A, R305S, and E325A mutant enzymes. Data demonstrate that the mutation of His256 induces a change in the phosphatase hydrolytic reaction mechanism. Elimination of the nucleophilic catalyst, H256A, results in a change in mechanism. In the H256A mutant enzyme, His390 likely acts as a general base to activate water for direct hydrolysis of the 2-phosphate of Fru-2,6-P2. Mutation of Arg255 and Arg305 suggests that the arginines probably have a role in neutralizing excess charge on the 2-phosphate and polarizing the phosphoryl for subsequent transfer to either His256 or water. The role of Glu325 is less certain, but it may serve as a general acid, protonating the leaving 2-hydroxyl of Fru-2,6-P2.  相似文献   

18.
Mutation of tyrosine-288 to a phenylalanine in cytochrome c oxidase from Rhodobacter sphaeroides drastically alters its properties. Tyr-288 lies in the CuB-cytochrome a3 binuclear catalytic site and forms a hydrogen bond with the hydroxy group on the farnesyl side chain of the heme. In addition, through a post-translational modification, Y288 is covalently linked to one of the histidine ligands that is coordinated to CuB. In the Y288F mutant enzyme, the "as-isolated" preparation is a mixture of reduced cytochrome a and oxidized cytochrome a3. The cytochrome a3 heme, which is largely six-coordinate low-spin in both oxidation states of the mutant, cannot be reduced by cytochrome c, but only by dithionite, possibly due to a large decrease in its reduction potential. It is postulated that the Y288F mutation prevents the post-translational modification from occurring. As a consequence, the catalytic site becomes disrupted. Thus, one role of the post-translational modification is to stabilize the functional catalytic site by maintaining the correct ligands on CuB, thereby preventing nonfunctional ligands from coordinating to the heme.  相似文献   

19.
Azide, cyanide, fluoride, imidazole, and pyridine binding to ferric and ferrous native horse heart cytochrome c and to its carboxymethylated derivative has been investigated, from the thermodynamic viewpoint, at pH 7.5 and 25.0 degrees C. Ligand affinity for ferric and ferrous carboxymethylated cytochrome c is higher by about 30- and 400-fold, respectively, than that observed for the native protein. The results here reported: (i) allow the estimation, for the first time, of the ligand-independent free energy associated with the heme-iron sixth coordination bond in ferric and ferrous native cytochrome c, which turns out to be +8.4 kJ mol-1 and +14.6 kJ mol-1, at 25.0 degrees C, respectively, and (ii) suggest an interplay between redox, structural, ligand binding, and recognition properties of cytochrome c.  相似文献   

20.
1H NMR spectra of a series of distal point mutants of human and sperm whale deoxy myoglobin have been recorded and their spectral parameters compared with those of wild type. The substitutions investigated include His64(E7)-->Gly, Ala, Val, Leu, Ile, and Gln and Val68(E11)-->Ala, Ile. The three resonances from the proximal His F8 imidazole ring, as well as two heme methyl signals, are identified in each of the proteins. Significant perturbations of the NMR spectra of mutant deoxy myoglobins (Mbs) occurred only upon substitution of His64(E7) by any non-polar residue, with only minor variation in parameters throughout the range of side chains. These spectral changes are attributed to the elimination of a non-coordinated ordered water molecule in the distal pocket found hydrogen bonded to His64(E7) in crystals of wild-type deoxy Mb, but abolished in the His64(E7)-->Leu mutant deoxy Mb crystal (Quillin, M. L., Arduini, R. M., Olson, J. S., and Philips, G. N., Jr. (1993) J. Mol. Biol. 234, 140-155). The observed spectral changes, increased His F8 ring spin delocalization, and decreased heme in-plane asymmetry, can be directly attributed to the weakening of the effective axial field and a decrease in the asymmetry in the rhombic ligand field resulting from removal of the water molecule. The hyperfine shift patterns for the mutants His64(E7)-->Gln and Val68(E11)-->Ile deoxy Mbs are minimally perturbed from that of wild type and are interpreted to reflect a conserved distal water-binding site. In the point mutant Val68(E11)-->Ala, the decreased covalency to the axial His F8 is interpreted as reflecting a conserved distal water molecule that can interact more strongly with the iron due to the reduced steric bulk of the E11 side chain. The differential 1H NMR spectral parameters for the His F8 resonances in the two subunits of T state deoxy Hb A are shown to be similarly consistent with the known occupation of the distal water binding site in the alpha-, but not beta-subunit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号