首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The numerical modeling of the conjugate heat transfer and fluid flow through the micro-heat sink was presented in the paper, considering the viscous dissipation effect. Three different fluids with temperature dependent fluid viscosity are considered: water, dielectric fluid HFE-7600 and isopropanol. The square shape of the cross-section is considered with D h  = 50 μm with a channel length L = 50 mm. As most of the reported researches dealt with fully developed fluid flow and constant fluid properties in this paper the thermal and hydro-dynamic developing laminar fluid flow is analyzed. Two different heat transfer conditions are considered: heating and cooling at various Br. The influence of the viscous heating on local Nu and Po is analyzed. It was shown that for a given geometry the local Po and Nu numbers are strongly affected by the viscous heating. Moreover the Po number attains the fully developed value as the external heating is equal with the internal viscous heating.  相似文献   

2.
A three-dimensional finite-element numerical model is presented for simulation of the steady-state performance characteristics of heat pipes. The mass, momentum and energy conservation equations are solved for the liquid and vapor flow in the entire heat pipe domain. The calculated outer wall temperature profiles are in good agreement with the experimental data. The estimations of the liquid and vapor pressure distributions and velocity profiles are also presented and discussed. It is shown that the vapor flow field remains nearly symmetrical about the heat pipe centerline, even under a non-uniform heat load. The analytical method used to predict the heat pipe capillary limit is found to be conservative.  相似文献   

3.
The two-dimensional Navier-Stokes equations and the energy equation governing steady laminar incompressible flow are solved by a penalty finite-element model for flow across finite depth, five-row deep, staggered bundles of cylinders. Pitch to diameter ratios of 1·5 and 2·0 are considered for cylinders in equilateral triangular and square arrangements. Reynolds numbers studied range from 100 to 400, and a Prandtl number of 0·7 is used. Velocity vector fields, streamline patterns, vorticity, pressure and temperature contours, local and average Nusselt numbers, pressure and shear stress distributions around the cylinder walls and drag coefficients are presented. The results obtained agree well with available experimental and numerical data.  相似文献   

4.
Three-dimensional laminar fluid flow and heat transfer over a four-row plate-fin and tube heat exchanger with electrohydrodynamic (EHD) wire electrodes are studied numerically. The effects of different electrode arrangements (square and diagonal), tube pitch arrangements (in-line and staggered) and applied voltage (VE=0–16 kV) are investigated in detail for the Reynolds number range (based on the fin spacing and frontal velocity) ranging from 100 to 1,000. It is found that the EHD enhancement is more effective for lower Re and higher applied voltage. The case of staggered tube pitch with square wire electrode arrangement gives the best heat transfer augmentation. For VE=16 kV and Re = 100, this study identifies a maximum improvement of 218% in the average Nusselt number and a reduction in fin area of 56% as compared that without EHD enhancement.  相似文献   

5.
This investigation deals with the effects of slip, magnetic field, and non- Newtonian flow parameters on the flow and heat transfer of an incompressible, electrically conducting fourth-grade fluid past an infinite porous plate. The heat transfer analysis is carried out for two heating processes. The system of highly non-linear differential equations is solved by the shooting method with the fourth-order Runge-Kutta method for moderate values of the parameters. The effective Broyden technique is adopted in order to improve the initial guesses and to satisfy the boundary conditions at infinity. An exceptional cross-over is obtained in the velocity profile in the presence of slip. The fourth-grade fluid parameter is found to increase the momentum boundary layer thickness, whereas the slip parameter substantially decreases it. Similarly, the non-Newtonian fluid parameters and the slip have opposite effects on the thermal boundary layer thickness.  相似文献   

6.
The laminar convective flow and heat transfer in a duct with a trapezoidal cross-sectional area are studied numerically. The governing equations are solved numerically by a finite volume formulation in complex three-dimensional geometries using co-located variables and Cartesian velocity components. Details of the numerical method are presented. The accuracy of the method was also established by comparing the calculated results with the analytical and numerical results available in the open literature. The Nusselt numbers are obtained for the boundary condition of a uniform wall temperature whereas the friction factors are calculated for no-slip conditions at the walls. The asymptotic values of the Nusselt numbers, friction factors. incremental pressure drops, axial velocity and momentum rate and kinetic energy correction factors approach the available fully developed values. Various geometrical dimensions of the cross-section are considered.  相似文献   

7.
The present work represents a two-dimensional numerical prediction of forced turbulent flow heat transfer through a grooved tube. Four geometric groove shapes (circular, rectangular, trapezoidal and triangular) were selected to perform the study, as well as two aspect ratios of groove-depth to tube diameter (e/D = 0.1 and 0.2). The study focuses on the influence of the geometrical shapes of grooves and groove-depth on heat transfer and fluid flow characteristics for Reynolds number ranging from 10,000 to 20,000. The characteristics of Nusselt number, friction factor and entropy generation are studied numerically by the aid of the computational fluid dynamics (CFD) commercial code of FLUENT. It is observed that the best performance occurs with the lower depth-groove ratio, whereas it is found that the grooved tube provides a considerable increase in heat transfer at about 64.4 % over the smooth tube and a maximum gain of 1.52 on thermal performance factor is obtained for the triangular groove with (e/D = 0.1).  相似文献   

8.
Fully-developed flow calculations were performed on ducts of cross-shaped cross-section, which may be regarded as possible candidates for compact heat exchanger configurations. A parametric study was made on the friction and heat transfer characteristics in terms of the parameter α associated with the decrease in the cross-sectional area (namely, α=0 for a square duct and α→1 for infinite parallel plates). As increasing α, both the Nusselt number and friction coefficient decrease toward their minimum levels, but then, increase gradually, and overshoot those of a square duct. Consequently, the heat transfer coefficient shows a significant increase for α>0.4, suggesting an excellent performance of heat transfer surfaces in the duct of cross-shaped cross-section.  相似文献   

9.
Convective flow and heat transfer in an inclined channel bounded by two rigid plates held at constant different temperatures with one region filled with porous matrix saturated with a viscous fluid and another region with a clear viscous fluid different from the fluid in first region is studied analytically. The coupled nonlinear governing equations are solved using regular perturbation method. It is found that the presence of porous matrix in one of the region reduces the velocity and temperature. Results have been presented for a wide range of governing parameters such as Grashof number, porous parameter, angle of inclination, ratio of heights of the two layers and also the ratio of viscosities.  相似文献   

10.
Excessive heat from microelectronic components is essential to remove to increase the reliability of the system. In this paper, various types of perforations in the form of small channels such as square, circular, triangular and hexagonal cross sections are introduced and thermal performances are compared to improve the cooling performance of heat sink. The governing equations are solved by adopting a control volume based finite element method with an unstructured non-uniform grid system. Flow and heat transfer characteristics are presented for Reynolds numbers from 2 × 104 to 4 × 104 based on the fin length and Prandtl number is taken as Pr = 0.71. RANS based k-ε turbulence model is used to predict the turbulent flow parameters. The predicted results are validated by the previously published experimental data and in reasonable agreement with the experiment. Results show that fins having circular perforations have better thermal and fluid dynamic performances than the other types of fins considered here.  相似文献   

11.
Melting heat transfer in the boundary layer flow of a couple stress fluid over a stretching surface is investigated. The developed differential equations are solved for homotopic solutions. It is observed that the velocity and the boundary layer thickness are decreasing functions of the couple stress fluid parameter. However, the temperature and surface heat transfer increase when the values of the couple stress fluid parameter increase. The velocity and temperature fields increase with an increase in the melting process of the stretching sheet.  相似文献   

12.
The two-dimensional forced convection stagnation-point flow and heat transfer of a viscoelastic second grade fluid obliquely impinging on an infinite plane wall is considered as an exact solution of the full partial differential equations. This oblique flow consists of an orthogonal stagnation-point flow to which a shear flow whose vorticity is fixed at infinity is added. The relative importance of these flows is measured by a parameter γ. The viscoelastic problem is reduced to two ordinary differential equations governed by the Weissenberg number We, two parameters α and β, the later being a free parameter β, introduced by Tooke and Blyth [A note on oblique stagnation-point flow, Physics of Fluids 20 (2008) 033101-1–3], and the Prandtl number Pr. The two cases when α=β and αβ are, respectively, considered. Physically the free parameter may be viewed as altering the structure of the shear flow component by varying the magnitude of the pressure gradient. It is found that the location of the separation point xs of the boundary layer moves continuously from the left to the right of the origin of the axes (xs<0).  相似文献   

13.
 The problem of fully developed free convection two fluid magnetohydrodynamic flow in an inclined channel is investigated. The governing momentum and energy equations are coupled and highly nonlinear due to dissipation terms, solutions are found employing perturbation technique for small values of Pr · Ec (=ɛ) the product of Prandtl number and Eckert number. Effects of Grashof number, Hartmann number, inclination angle, the ratios of electrical conductivities, viscosities and heights of two fluids on the flow are explored. It is observed that the flow can be controlled effectively by suitable adjustment of the values for the ratios of heights, electrical conductivities and viscosities of the two fluids. Received on 10 December 1999  相似文献   

14.
The need for three-dimensional, nonintrusive field measurements in the area of heat transfer and fluid flows grows very rapidly, and at this time there are very few experimental techniques that can be used for such a purpose. Axial tomography is a promising technique for accurate quantitative measurements for a variety of heat transfer and fluid flow problems. It has already been tested and practiced in a number of applications, including medical scanning technology. The technique is based on Radon's original work and reconstructs a three-dimensional field from its two-dimensional projections (integrated measurements) obtained at different view angles. This review highlights some of the most important methods used in tomography and their applications to experimental heat transfer and fluid flow studies.  相似文献   

15.
In this study, a numerical simulation of copper microchannel heatsink (MCHS) using nanofluids as coolants is presented. The nanofluid is a mixture of pure water and nanoscale metallic or nonmetallic particles with various volume fractions. Also, the effects of various volume fractions, volumetric flow rate and various materials of nanoparticles on the performance of MCHS have been developed. A three-dimensional computational fluid dynamics model was developed using the commercial software package FLUENT, to investigate the conjugate fluid flow and heat transfer phenomena in micro channel heatsinks. The results show that the cooling performance of a microchannel heat sink with water based nanofluid containing Al2O3 (vol 8%) is enhanced by about 4.5% compared with micro channel heatsink with pure water. Nanofluids reduce both the thermal resistance and the temperature difference between the top (heated) surface of the MCHS and inlet nanofluid compared with that pure water. The cooling performance of a micro channel heat sink with metal nanofluids improves compared with that of a micro channel heat sink with oxide metal nanofluids because the thermal conductivity of metal nanofluid is higher than oxide metal nanofluids. Micro channel heat sinks with nanofluids are expected to be good candidates as the next generation cooling devices for removing ultra high heat flux.  相似文献   

16.
《力学快报》2022,12(3):100342
The study of the natural convective flow of a fluid in the presence of an induced magnetic field has always been of considerable importance due to its many applications in various areas of science, technology, and industry, such as the operation of magnetohydrodynamic generators. This study addresses an analysis of exponential heat source and induced magnetic field on the second-class convection of Casson fluid in a microchannel. The flow is in a vertical microchannel organized by two vertical plates. The answer to governing equations has been grabbed for temperature field, induced magnetic field, and velocity via Akbari-Ganji's method (AGM). Nusselt number, skin friction coefficient, and current density are approximated. Graphs that describe the conclusion of influential physical variables on velocity, temperature, current density, induced magnetic field, and skin friction coefficient distributions are shown. Comparison of results with numerical method (Runge-Kutta-Fehlberg, RKF-45), homotopy perturbation method, and AGM confirms the accuracy of answers obtained with AGM.  相似文献   

17.
Two mechanisms of roll initiation are highlighted in a horizontal channel flow, uniformly heated from below, at constant heat flux (Γ = 10, Pr = 7, 50 ≤ Re ≤ 100, 0 ≤ Ra ≤ 106). The first mechanism is the classical one, it occurs for low Rayleigh numbers and is initiated by the lateral wall effect. The second occurs for higher Rayleigh numbers and combines the previous effect with a supercritical vertical temperature gradient in the lower boundary layer, which simultaneously triggers pairs of rolls in the whole zone in between the two lateral rolls. We have found that in the present configuration, the transition between the two roll initiation mechanisms occurs for Ra/Re 2 ≈ 18. Consequently, the heat transfer is significantly enhanced compared to the pure forced convection case owing to the flow pattern responsible of the continuous flooding the heated wall with cold fluid.  相似文献   

18.
We consider turbulent flows in a differentially heated Taylor-Couette system with an axial Poiseuille flow. The numerical approach is based on the Reynolds Stress Modeling (RSM) of [Elena and Schiestel, 1996] and [Schiestel and Elena, 1997] widely validated in various rotor-stator cavities with throughflow ( [Poncet, 2005], [Poncet et al., 2005] and [Haddadi and Poncet, 2008]) and heat transfer (Poncet and Schiestel, 2007). To show the capability of the present code, our numerical predictions are compared very favorably to the velocity measurements of Escudier and Gouldson (1995) in the isothermal case, for both the mean and turbulent fields. The RSM model improves, in particular, the predictions of the k-ε model of Naser (1997). Then, the second order model is applied for a large range of rotational Reynolds (3744 ? Rei ? 37,443) and Prandtl numbers (0.01 ? Pr ? 12), flow rate coefficient (0 ? Cw ? 30,000) in a very narrow cavity of radius ratio s = Ri/Ro = 0.961 and aspect ratio L = (Ro − Ri)/h = 0.013, where Ri and Ro are the radii of the inner and outer cylinders respectively and h is the cavity height. Temperature gradients are imposed between the incoming fluid and the inner and outer cylinders. The mean hydrodynamic and thermal fields reveal three distinct regions across the radial gap with a central region of almost constant axial and tangential mean velocities and constant mean temperature. Turbulence, which is weakly anisotropic, is mainly concentrated in that region and vanishes towards the cylinders. The mean velocity distributions are not clearly affected by the rotational Reynolds number and the flow rate coefficient. The effects of the flow parameters on the thermal field are more noticeable and considered in details. Correlations for the averaged Nusselt numbers along both cylinders are finally provided according to the flow control parameters Rei, Cw, and Pr.  相似文献   

19.
20.
This investigation explores the characteristics of melting heat transfer in a boundary layer flow of the Jeffrey fluid near the stagnation point on a stretching sheet subject to an applied magnetic field. The governing boundary layer equations are transformed to ordinary differential equations by similarity transformations. Resulting nonlinear problems are solved analytically by the homotopy analysis method. It is noticed that an increase in the melting parameter decreases the dimensionless velocity and temperature, while an increase in the Deborah number increases the velocity and momentum boundary layer thickness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号