首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A ferritic‐martensitic (FM) 11 % chromium steel with final heat treatment was subjected to a short‐term creep test at a stress of 150 MPa and 600 °C for 1100 h in order to study the change of precipitates in the steel during the creep test. Except for Nb‐rich metall carbides (MC, M23C6) and Laves phases, Fe‐W‐Cr‐rich M6C (based on Fe3W3C) carbides forming during the creep test were also identified in the crept steel by electron diffraction and x‐ray diffraction in combination with energy dispersive x‐ray analysis of extraction carbon replicas. The identified M6C carbides have a fcc crystal structure, a metallic element composition of approximately 44Fe, 32 W, and 20Cr in atomic %, and large sizes ranging from 100 nm to 300 nm in diameter. The M6C carbides are a dominant phase in the crept steel. M6X precipitates are generally not easy to form during high temperature creep, even if it is a long‐term creep, in ferritic‐martensitic 9–12 % chromium steels with a final heat treatment. The present work provides the evidence for the M6C carbides forming during short‐term creep in ferritic‐martensitic high chromium steels. The formation of the M6C carbides was discussed.  相似文献   

2.
《材料科学技术学报》2019,35(7):1240-1249
The microstructure, precipitation and mechanical properties of Ferrium S53 steel, a secondary hardening ultrahigh-strength stainless steel with 10% Cr developed by QuesTek Innovations LLC, upon tempering were studied by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and tensile and impact tests. Based on these results, the influence of the tempering temperature on the microstructure and properties was discussed. The results show that decomposition occurred when the retained austenite was tempered above 440 °C and that the hardening peak at 482 °C was caused by the joint strengthening of the precipitates and martensite transformation. Due to the high Cr content, the trigonal M7C3 carbide precipitated when the steel was tempered at 400 °C, and M7C3 and M2C (5–10 nm in size) coexisted when it was tempered at 482 °C. When the steel was tempered at 630 °C, M2C and M23C6 carbides precipitated, and the sizes were greater than 50 nm and 500 nm, respectively, but no M7C3 carbide formed. When the tempering temperature was above 540 °C, austenitization and large-size precipitates were the main factors affecting the strength and toughness.  相似文献   

3.
Transmission electron microscopic studies aimed at elucidating the effect of carbon level on the tempering behaviour of 2 1/4 Cr 1 Mo steels have been carried out. Specimens with two different carbon levels (0.06% and 0.11 %) were cooled in flowing argon gas (AC) from an austenitization temperature of 1323 K and tempered at 823, 923 and 1023 K for times ranging from 2 to 50 h. The tempering behaviour at these temperatures for the two carbon levels is found to differ in the nature of secondary hardening at lower temperatures, variation in the time to peak hardness and the saturation level of hardness at long tempering times. Based on a detailed study, using analytical electron microscopy, on the morphology, crystallography and microchemistry of secondary phases, the factors governing the observed variations in tempering behaviour are related to the difference in the dissolution rate of bainite, nucleation of acicular M2C carbides and transformation rate of primary carbides into secondary alloy carbides. The carbides which promote softening were identified as M7C3, M23C6 and M6C, whereas hardening is mainly imparted by M2C.  相似文献   

4.
9 %–12 % Cr ferritic/martensitic steels with a good long-term creep strength at temperatures up to 650 °C and higher are being developed in order to increase steam temperature of coal-fired power plants.Thermomechanical treatment can effectively enhance the mechanical properties of high-Cr ferritic/martensitic steels mainly due to plenty of nano-sized precipitates produced by thermomechanical treatment. Nano-sized precipitates in an 11 % Cr ferritic/martensitic steel produced by a thermomechanical treatment, including warm rolling at 650 °C plus tempering at 650 °C for 1 h, were investigated by transmission electron microscopy. The average size of precipitates in the steel after the thermomechanical treatment was determined to be about 30 nm in diameter, which is only one-third of the average size of precipitates in the steel with the normalized and tempered condition. A large number of Cr-rich precipitates having an average diameter of about 25 nm in the steel produced by the thermomechanical treatment were identified as Cr-rich M2C carbide with a hexagonal crystal structure, rather than M23C6 or MX phase. The plenty of nano-sized Cr-rich M2C carbides were dominant phase in the steel after the thermomechanical treatment. The reason why prior precipitate phase formed in the steel during the thermomechanical treatment was Cr-rich M2C carbide is also discussed.  相似文献   

5.
Abstract

The microstructural evolution in (2–15)Cr–2W–0·1C (wt-%) firritic steels after quenching, tempering, and subsequent prolonged aging was investigated, using mainly transmission electron microscopy. The steels examined were low induced radioactivation ferritic steels for fusion reactor structures. With increasing Cr concentration, the matrix phase changed from bainite to martensite and a dual phase of martensite and δ ferrite. During tempering, homogeneous precipitation of fine W2C rich carbides occurred in bainite and martensite, causing secondary hardening between 673 and 823 K. With increasing tempering temperature, dislocation density decreased and carbides had a tendency to precipitate preferentially along interfaces such as bainite or martensite subgrain boundaries. During aging at high temperature, carbides increased in size and carbide reaction from W2C and M6C to stable M23C6 occurred. No carbide formed in δ ferrite. The precipitation sequence of carbides was analogous to that in conventional Cr–Mo steels.

MST/1049  相似文献   

6.
The PH 17-4 Mo steel (Z6 CND 17.04.02), used in the steam generator of nuclear reactors, was investigated in order to determine the structural evolution occurring during tempering carried out under various conditions of duration and temperature. The formation and growth of different types of carbides such as Mo2C, M23C6 and M7C3 and of Fe2Mo intermetallic compound were studied and also of reversed austenite. A small secondary hardening peak was observed for tempering close to 400' C which is related to the Mo2C carbide precipitation; beyond this temperature, softening occurs.  相似文献   

7.
M2 high-speed steel samples were fabricated by laser additive manufacturing and tempered at different times at a temperature of 560°C. The microstructures of deposited samples were characterised by fine equiaxial grains, dendrites and inter-dendritic network-shape eutectic carbides and were composed of supersaturated martensite, retained austenite and M2C-type carbides. The content of retained austenite gradually decreased with increasing tempering times. Meanwhile, the micro-hardness of deposited samples was 688?±?10?HV, while the first, second and third tempering times were 833?±?13?Hv, 710?±?6?Hv and 740?±?7?Hv, respectively (standard deviations).Wear resistances of all samples showed an adhesive wear mechanism, and M2 HSS without tempering had a lower friction coefficient with an average of 0.52. M2 HSS after tempering twice at 560°C/2?h had a larger wear volume loss than others.  相似文献   

8.
Secondary carbide precipitation in an 18 wt%Cr-1 wt% Mo white iron   总被引:9,自引:0,他引:9  
High chromium (18%) white irons solidify with a substantially austenitic matrix supersaturated with chromium and carbon. The austenite is destabilized by a hightemperature heat treatment which precipitates chromium-rich secondary carbides. In the as-cast condition the eutectic M7Ca3 carbides are surrounded by a thin layer of martensite and in some instances an adjacent thicker layer of lath martensite. The initial secondary carbide precipitation occurs on sub-grain boundaries during cooling of the as-cast alloy. After a short time (0.25 h) at the destabilization temperature of 1273 K, cuboidal M23C6 precipitates within the austenite matrix with the cube-cube orientation relationship. After the normal period of 4 h at 1273 K, there is a mixture of M23C6 and M7C3 secondary carbides and the austenite is sufficiently depleted in chromium and carbon to transform substantially to martensite on cooling to room temperature.  相似文献   

9.
This paper focuses on the effects of nickel on secondary hardening of a modified H13 hot work die steel. Both the non‐nickel steel and the nickel‐added steel get a secondary hardening peak at 520 °C, and the secondary hardening peak trends to increase in the nickel‐added steel. On the basis of scanning electron microscope and transmission electron microscope observation, the rise of the secondary hardening peak is in connection with the precipitation of M3C type carbides. More strip‐shaped and needle‐shaped M3C type carbides precipitated from matrix. By means of internal friction, the result suggests that nickel does not affect the position of the Snoek‐Kê‐Köster peak, but the height of Snoek‐Kê‐Köster peak of the nickel‐added steel is higher, which indicates nickel enhances the interaction between dislocations and interstitial atoms, promoting the precipitation of carbides.  相似文献   

10.
Fe–35Ni–25Cr–0.4C alloys with different compositions are aged between 750 and 1150°C up to ~10,000?h. As-cast microstructure contains interdendritic carbides of type M7C3 (‘Cr7C3’) and MC (‘NbC’). At service temperatures, M7C3 transform into M23C6 (‘Cr23C6’) within hours. Then, a hardening precipitation of secondary intragranular M23C6 occurs over hundreds of hours, the nose of the ‘temperature-time-hardening’ curve being around 1000°C. G phase forms after long aging; its solvus temperature and formation kinetics depend on silicon content. Z phase is observed after long aging at 950°C or above. G and Z phases form at the expense of MC. Very long aging causes nitridation under air, with first a transformation of M23C6 into chromium-rich M2X carbonitrides (X?=?C,N), then of MC into chromium-rich MX carbonitrides.  相似文献   

11.
Abstract

Stainless steels containing enhanced chromium and carbon contents are particularly attractive for applications requiring improved wear and corrosion resistance. The as cast microstructure of such steels is composed mainly of ferritic matrix along with a network of interdendritic primary carbides. It has been shown that heat treatment of these steels results in microstructures that contain more than one type of carbide. A selective dissolution technique has been employed to isolate carbides from the matrix. Scanning electron microscope and X-ray diffraction studies of the as cast steels have shown that the primary carbides are essentially of M7C3 type, whereas in heat treated specimens both M7C3 (primary) and M23C6 (secondary) type carbides have been observed. The relative amounts of these carbides are found to be dependent on the heat treatment temperature. In addition, nucleation of austenite occurs above 950°C and at ~1250°C the matrix transforms entirely to austenite, which is retained completely on quenching to room temperature.  相似文献   

12.
In this paper, the precipitates formed during the tempering after quenching from temperature 1150 °C for 7.90Cr–1.65Mo–1.25Si–1.2V steels are investigated using an analytical transmission electron microscope (A-TEM).The study of this tempering is carried out in isothermal and anisothermal conditions, by comparing the results given by dilatometry and hot hardness.Tempering is performed in the range of 300–700 °C. Coarse primary carbides retained after heat treatment are V-rich MC and Cr–Mo-rich M7C3 types. In turn, it gives a significant influence on the precipitation of fine secondary carbides, that is, secondary hardening during tempering. The major secondary carbides are Cr–Mo–V-rich M′C (and/or) Cr–Mo-rich M2C type. The peak hardness is observed in the tempering range of 450–500 °C. In the end, we observe between 600 and 700 °C, that this impoverished changes the phase. At these high temperatures of tempering, we observe that there is a carbide formation of the types M6C developing at the expense of the fine M7C3 carbides previously formed.  相似文献   

13.
High-speed steel powders (T42 grade) have been uniaxially cold-pressed and vacuum sintered to full density. Subsequently, the material was heat treated following an austenitising + quenching + multitempering route or alternatively austenitising + isothermal annealing. The isothermal annealing route was designed in order to attain a hardness value of ~50 Rockwell C (HRC) (adequate for structural applications) while the multitempering parameters were selected to obtain this value and also the maximum hardening of the material (~66 HRC). Microstructural characterisation has been carried out by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The microstructure consists of a ferrous (martensitic or ferritic) matrix with a distribution of second phase particles corresponding to nanometric and submicrometric secondary carbides precipitated during heat treatment together with primary carbides. The identification of those secondary precipitates (mainly M3C, M6C and M23C6 carbides) has allowed understanding the microstructural evolution of T42 high-speed steel under different processing conditions.  相似文献   

14.
The microstructure of high-speed steels consists of a martensitic matrix with a dispersion of two sets of carbides. These carbides are usually known as primary and secondary carbides. The role of the primary carbides has been reported to be of no importance in strengthening the steels, due to their large size and large interparticle spacing. The present authors have studied the role of the primary carbides on the wear of high-speed steels and found them to be of no importance, and under certain conditions contributing to higher wear rates. It has been shown analytically and experimentally that in quenched and tempered high-speed steels, the precipitation of the secondary hardening carbide (cubic M2C type) is the main reason for the improved strength and wear resistance. This shows that the secondary hardening phenomenon of high-speed steels is a direct result of the hardening caused by the precipitation of the cubic M2C-type carbide. The present study has estimated that at peak hardness the volume fraction of secondary hardening carbides is approximately 20%. The measured strength of high-speed steels was found to be lower than the theoretically calculated strength due to non-homogeneous precipitation of the secondary hardening carbides. Areas which were observed to be free from secondary hardening carbides are real and are not artefacts. It has been shown that the strength of high-speed steel in the region of peak hardness depends primarily on the precipitation of the secondary hardening carbide and secondarily on martensitic strengthening.  相似文献   

15.
Abstract

It is crucial for the carbon concentration of 9% Cr steel to be reduced to a very low level, so as to promote the formation of MX nitrides rich in vanadium as very fine and thermally stable particles to enable prolonged periods of exposure at elevated temperatures and also to eliminate Cr-rich carbides M23C6. Sub-boundary hardening, which is inversely proportional to the width of laths and blocks, is shown to be the most important strengthening mechanism for creep and is enhanced by the fine dispersion of precipitates along boundaries. The suppression of particle coarsening during creep and the maintenance of a homogeneous distribution of M23C6 carbides near prior austenite grain boundaries, which precipitate during tempering and are less fine, are effective for preventing the long-term degradation of creep strength and for improving long-term creep strength. This can be achieved by the addition of boron. The steels considered in this paper exhibit higher creep strength at 650 °C than existing high-strength steels used for thick section boiler components.  相似文献   

16.
In this paper, the precipitates formed during the heat-treatment processes for 2.25Cr–1Mo–0.25V steels were investigated by using an analytical transmission electron microscope (A-TEM). The results show that the complex precipitates containing several microalloyed elements (Ti, Nb, V) are dominant when the specimens are re-austenitized at 980 °C and 1200 °C. When the austenitization temperature is increased, the size and the quantity of the precipitates decrease. It is worth noting that Nb and V still exist in the precipitates even when the austenitizing temperature is as high as 1200 °C. It indicates that the composition of the complex precipitates has become homogeneous during prior thermal processing. Some vanadium is also preserved in the core of the complex precipitates. For the specimen quenched from 980 °C and tempered at 650 °C for 30 h, numerous carbides (e.g.; M23C6, M2C and M7C3) are formed along grain boundary or in the matrix, in which elements such as Fe, Mn, Cr, Mo and V are found. Moreover, the prior precipitates have become coarse due to the extended tempering time.  相似文献   

17.
Formation of the reversed austenite obtained by intercritical tempering has been studied via transmission electron microscopy (TEM) in a Fe-13%Cr-4%Ni-Mo low carbon martensitic stainless steel. It is found that the precipitation of M23C6 carbides along the martensite lath boundaries will result in Ni-enrichment in the adjacent region. The reversed austenite forms with the Ni-enrichment region as the nucleation sites, keeps a cube-cube orientation relationship with the M23C6 carbides and bears the Kurdjumov-Sachs (K-S) relationship with the martensite. Moreover, the reversed austenite formed inside the martensite laths is also confirmed. The mechanism for formation of the reversed austenite is discussed in detail.  相似文献   

18.
The impact of various heat treatment procedures on microstructure, dislocation density, hardness, tensile characteristics, and impact toughness of P92 steel was examined in the current experiment. The martensitic microstructure and average microhardness of 463 HV 0.2±8 HV 0.2 of the normalized steel were prevalent. A tempering procedure was carried out at 760 °C for a range of 2 hours to 6 hours. Additionally, an X-ray diffraction examination was carried out, and the results were used to determine the dislocation density. The normalized sample was characterized by a high dislocation density. The dislocation density was decreased by tempering of normalized samples. With an increase in tempering time, the effect of the treatment coarsened the grains, precipitates, and decreased the area fraction of precipitates. After tempering, MX, M23C6, and M7C3 types precipitates were found to have precipitated, according to energy dispersive spectroscopy and x-ray diffraction research. The ideal tempering period was determined to be 4 hours at a tempering temperature of 760 °C based on the microstructure and mechanical characteristics. Steel that was tempered at 760 °C for 4 hours had a yield strength of 472 MPa, an ultimate tensile strength of 668.02 MPa, and an elongation of 26.05 %, respectively.  相似文献   

19.
The microstructures, hardness and corrosion behavior of high chromium cast irons with 20, 27 and 36 wt.%Cr have been compared. The matrix in as-cast 20 wt.%Cr, 27 wt.%Cr and 36 wt.%Cr high chromium cast irons is pearlite, austenite and ferrite, respectively. The eutectic carbide in all cases is M7C3 with stoichiometry as (Cr3.37, Fe3.63)C3, (Cr4.75, Fe2.25)C3 and (Cr5.55, Fe1.45)C3, respectively. After destabilization at 1000 °C for 4 h followed by forced air cooling, the microstructure of heat-treatable 20 wt.%Cr and 27 wt.%Cr high chromium cast irons consisted of precipitated secondary carbides within a martensite matrix, with the eutectic carbides remaining unchanged. The type of the secondary carbide is M7C3 in 20 wt.%Cr iron, whereas both M23C6 and M7C3 secondary carbides are present in the 27 wt.%Cr high chromium cast iron. The size and volume fraction of the secondary carbides in 20 wt.%Cr high chromium cast iron were higher than for 27 wt.%Cr high chromium cast iron. The hardness of heat-treated 20 wt.%Cr high chromium cast iron was higher than that of heat-treated 27 wt.%Cr high chromium cast iron. Anodic polarisation tests showed that a passive film can form faster in the 27 wt.%Cr high chromium cast iron than in the 20 wt.%Cr high chromium cast iron, and the ferritic matrix in 36 wt.%Cr high chromium cast iron was the most corrosion resistant in that it exhibited a wider passive range and lower current density than the pearlitic or austenitic/martensitic matrices in 20 wt.%Cr and 27 wt.%Cr high chromium cast irons. For both the 20 wt.%Cr and the 27 wt.%Cr high chromium cast irons, destabilization heat treatment gave a slight improvement in corrosion resistance.  相似文献   

20.
The correlation between the grain boundary misorientation and the precipitation behaviors of intergranular M23C6 carbides in a wrought Ni–Cr–W superalloy was investigated by using the electron backscattered diffraction (EBSD) technique. It was observed that the grain boundaries with a misorientation angle less than 20°, as well as all coincidence site lattice (CSL) boundaries, are immune to precipitation of the M23C6 carbides; in contrast, the random high-angle grain boundaries with a misorientation angle of 20°–40° provide preferential precipitation sites of the M23C6 carbides at the random high-angle grain boundaries with a higher misorientation angle of 55°–60°/[2 2 3] turn to retard precipitation of M23C6 carbides owing to their nature like the Σ3 grain boundaries and retard the precipitation of M23C6 carbides. The low-angle and certain random grain boundary segments induced by twins were found to interrupt the precipitation of the M23C6 carbides along the high-angle grain boundaries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号