首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim of this study was to identify novel prognostic mRNA and microRNA (miRNA) biomarkers for hepatocellular carcinoma (HCC) using methods in systems biology. Differentially expressed mRNAs, miRNAs, and long non-coding RNAs (lncRNAs) were compared between HCC tumor tissues and normal liver tissues in The Cancer Genome Atlas (TCGA) database. Subsequently, a prognosis-associated mRNA co-expression network, an mRNA–miRNA regulatory network, and an mRNA–miRNA–lncRNA regulatory network were constructed to identify prognostic biomarkers for HCC through Cox survival analysis. Seven prognosis-associated mRNA co-expression modules were obtained by analyzing these differentially expressed mRNAs. An expression module including 120 mRNAs was significantly correlated with HCC patient survival. Combined with patient survival data, several mRNAs and miRNAs, including CHST4, SLC22A8, STC2, hsa-miR-326, and hsa-miR-21 were identified from the network to predict HCC patient prognosis. Clinical significance was investigated using tissue microarray analysis of samples from 258 patients with HCC. Functional annotation of hsa-miR-326 and hsa-miR-21-5p indicated specific associations with several cancer-related pathways. The present study provides a bioinformatics method for biomarker screening, leading to the identification of an integrated mRNA–miRNA–lncRNA regulatory network and their co-expression patterns in relation to predicting HCC patient survival.  相似文献   

2.
Long non‐coding RNAs (lncRNAs) are involved in the resistance of plants to infection by pathogens via interactions with microRNAs (miRNAs). Long non‐coding RNAs are cleaved by miRNAs to produce phased small interfering RNAs (phasiRNAs), which, as competing endogenous RNAs (ceRNAs), function as decoys for mature miRNAs, thus inhibiting their expression, and contain pre‐miRNA sequences to produce mature miRNAs. However, whether lncRNAs and miRNAs mediate other molecular mechanisms during plant resistance to pathogens is unknown. In this study, as a positive regulator, Sl‐lncRNA15492 from tomato (Solanum lycopersicum Zaofen No. 2) plants affected tomato resistance to Phytophthora infestans. Gain‐ and loss‐of‐function experiments and RNA ligase‐mediated 5′‐amplification of cDNA ends (RLM‐5′ RACE) also revealed that Sl‐miR482a was negatively involved in tomato resistance by targeting SlNBS‐LRR genes and that silencing of SlNBS‐LRR1 decreased tomato resistance. Sl‐lncRNA15492 inhibited the expression of mature Sl‐miR482a, whose precursor was located within the antisense sequence of Sl‐lncRNA15492. Further degradome analysis and additional RLM‐5′ RACE experiments verified that mature Sl‐miR482a could also cleave Sl‐lncRNA15492. These results provide a mechanism by which lncRNAs might inhibit precursor miRNA expression through antisense strands of lncRNAs, and demonstrate that Sl‐lncRNA15492 and Sl‐miR482a mutually inhibit the maintenance of Sl‐NBS‐LRR1 homeostasis during tomato resistance to P. infestans.  相似文献   

3.
4.
Peroxiredoxin‐5 (PRDX5) is an antioxidant enzyme which differs from the other peroxiredoxins with regards to its enzymatic mechanism, its high affinity for organic peroxides and peroxynitrite and its wide subcellular distribution. In particular, the mitochondrial isoform of PRDX5 confers a remarkable cytoprotection toward oxidative stress to mammalian cells. Mitochondrial dysfunction and disruption of Ca2+ homeostasis are implicated in neurodegeneration. Growing evidence supports that endoplasmic reticulum (ER) could operate in tandem with mitochondria to regulate intracellular Ca2+ fluxes in neurodegenerative processes. Here, we overexpressed mitochondrial PRDX5 in SH‐SY5Y cells to dissect the role of this enzyme in 1‐methyl‐4‐phenylpyridinium (MPP)+‐induced cell death. Our data show that mitochondria‐dependent apoptosis triggered by MPP+, assessed by the measurement of caspase‐9 activation and mitochondrial DNA damage, is prevented by mitochondrial PRDX5 overexpression. Moreover, PRDX5 overexpression blocks the increase in intracellular Ca2+, Ca2+‐dependent activation of calpains and Bax cleavage. Finally, using Ca2+ channel inhibitors (Nimodipine, Dantrolene and 2‐APB), we show that Ca2+ release arises essentially from ER stores through 1,4,5‐inositol‐trisphosphate receptors (IP3R). Altogether, our results suggest that the MPP+ mitochondrial pathway of apoptosis is regulated by mitochondrial PRDX5 in a process that could involve redox modulation of Ca2+ transporters via a crosstalk between mitochondria and ER.  相似文献   

5.
6.
7.
8.
The zinc finger E‐box‐binding homeobox 1 (ZEB1) induced the epithelial–mesenchymal transition (EMT) and altered ZEB1 expression could lead to aggressive and cancer stem cell (CSC) phenotypes in various cancers. Tissue specimens from 96 prostate cancer patients were collected for immunohistochemistry and CD34/periodic acid–Schiff double staining. Prostate cancer cells were subjected to ZEB1 knockdown or overexpression and assessment of the effects on vasculogenic mimicry formation in vitro and in vivo. The underlying molecular events of ZEB1‐induced vasculogenic mimicry formation in prostate cancer were then explored. The data showed that the presence of VM and high ZEB1 expression was associated with higher Gleason score, TNM stage, and lymph node and distant metastases as well as with the expression of vimentin and CD133 in prostate cancer tissues. Furthermore, ZEB1 was required for VM formation and altered expression of EMT‐related and CSC‐associated proteins in prostate cancer cells in vitro and in vivo. ZEB1 also facilitated tumour cell migration, invasion and clonogenicity. In addition, the effects of ZEB1 in prostate cancer cells were mediated by Src signalling; that is PP2, a specific inhibitor of the Src signalling, dose dependently reduced the p‐Src527 level but not p‐Src416 level, while ZEB1 knockdown also down‐regulated the level of p‐Src527 in PC3 and DU‐145 cells. PP2 treatment also significantly reduced the expression of VE‐cadherin, vimentin and CD133 in these prostate cancer cells. Src signalling mediated the effects of ZEB1 on VM formation and gene expression.  相似文献   

9.
A. Li  J. Zhang  Z. Zhou  L. Wang  X. Sun  Y. Liu 《Animal genetics》2015,46(6):716-719
Domestic animals show considerable genetic diversity. Previous studies suggested that animal phenotypes were affected by miRNA–mRNA interplay, but these studies focused mainly on the analysis of one or several miRNA–mRNA interactions. However, in this study, we investigated miRNA–mRNA and miRNA–lncRNA interactions on a genomic scale using miranda and targetscan algorithms. There has been strong directional artificial selection practiced during the domestication of animals. Thus, we investigated SNPs that were located in miRNAs and miRNA binding sites and found that several SNPs located in 3′‐UTRs of mRNAs had the potential to affect miRNA–mRNA interactions. In addition, a database, named miRBond, was developed to provide visualization, analysis and downloading of the resulting datasets. Our results open the way to further experimental verification of miRNA–mRNA and miRNA–lncRNA interactions as well as the influence of SNPs upon such interplay.  相似文献   

10.
11.
The aim of the study was to discover possible differential cytotoxicity of triptolide towards estrogen-sensitive MCF-7 versus estrogen-insensitive MDA-MB-231 human breast cancer cells. Considering that MCF-7 cells express functional Estrogen receptor α (ERα) and wild-type p53, whereas MDA-MB-231 cells which are ERα-negative express mutant p53, the anti-proliferation effect of triptolide on MCF-7 and MDA-MB-231 cells were examined, the apoptotic effect and cell cycle arrest caused by triptolide were investigated, ERα and p53 expression were also observed in this paper. The results showed that the anti-proliferation effects were induced by triptolide in both cell lines. But the value of IC50 in MCF-7 cells for its anti-proliferation effect was about one tenth of that in MDA-MB-231 cells, which indicated that the effect is more potent in MCF-7 cells. Condensed chromatin or fragmented nuclei could be found in MCF-7 cells treated with only 40 nM triptolide but in MDA-MB-231 cells they couldn’t be observed until the concentration reached to 400 nM. Triptolide induced significant S cell cycle arrest along with the presence of sub-G0/G1 peak in MDA-MB-231 cells, whereas there was only slightly S cell cycle arrest on cell cycle distribution in MCF-7 cells. The role of p53 in two breast cancer cells was examined, the results showed that the mutant p53 in MDA-MB-231 cells was suppressed and the wild-type p53 in MCF-7 was increased. Moreover, triptolide could down regulate the expression of ERα in MCF-7 cells. The results showed that triptolide is much more sensitive to ERα-positive MCF-7 cells than to ERα-negative MDA-MB-231 cells, and the sensitivity is significantly associated with the ERα and p53 status.  相似文献   

12.
In hypoxic cells, dysfunctional mitochondria are selectively removed by a specialized autophagic process called mitophagy. The ER–mitochondrial contact site (MAM) is essential for fission of mitochondria prior to engulfment, and the outer mitochondrial membrane protein FUNDC1 interacts with LC3 to recruit autophagosomes, but the mechanisms integrating these processes are poorly understood. Here, we describe a new pathway mediating mitochondrial fission and subsequent mitophagy under hypoxic conditions. FUNDC1 accumulates at the MAM by associating with the ER membrane protein calnexin. As mitophagy proceeds, FUNDC1/calnexin association attenuates and the exposed cytosolic loop of FUNDC1 interacts with DRP1 instead. DRP1 is thereby recruited to the MAM, and mitochondrial fission then occurs. Knockdown of FUNDC1, DRP1, or calnexin prevents fission and mitophagy under hypoxic conditions. Thus, FUNDC1 integrates mitochondrial fission and mitophagy at the interface of the MAM by working in concert with DRP1 and calnexin under hypoxic conditions in mammalian cells.  相似文献   

13.
14.
Non‐small cell lung cancer (NSCLC) is the most prevalent type of lung cancer. The abnormal expression of many long non‐coding RNAs (lncRNAs) has been reported involved in the progression of various tumours, which can be used as diagnostic indicators or antitumour targets. Here, we found that the long non‐coding RNA 00312 was down‐regulated in paired NSCLC tissues and correlated with poor clinical outcome; decreased linc00312 expression in NSCLC was associated with larger and later stage tumours. Functional experiments showed that linc00312 could inhibit cell proliferation and promote apoptosis in vitro and in vivo. Furthermore, we found that HOXA5 could bind in the promoter of linc00312 and up‐regulated the expression of it. Moreover, linc00312 was down‐regulated in the plasma of NSCLC patients compared with that of healthy volunteers or other pulmonary diseases patients. Taken together, our findings indicated that linc00312 could be a novel diagnosis biomarker and a promising therapeutic target for NSCLC.  相似文献   

15.
16.
Thyroid cancer (TC) is a prevalent endocrine malignant cancer whose pathogenic mechanism remains unclear. The aim of the study was to investigate the roles of long non‐coding RNA (lncRNA) NR2F1‐AS1/miRNA‐338‐3P/CCND1 axis in TC progression. Differentially expressed lncRNAs and mRNAs in TC tissues were screened out and visualized by R program. Relative expression of NR2F1‐AS1, miRNA‐338‐3p and cyclin D1 (CCND1) was determined by quantitative real time polymerase chain reaction. In addition, Western blot analysis was adopted for evaluation of protein expression of CCND1. Targeted relationships between NR2F1‐AS1 and miRNA‐338‐3p, as well as miRNA‐338‐3p and CCND1 were predicted using bioinformatics analysis and validated by dual‐luciferase reporter gene assay. Besides, tumour xenograft assay was adopted for verification of the role of NR2F1‐AS1 in TC in vivo. NR2F1‐AS1 and CCND1 were overexpressed, whereas miRNA‐338‐3p was down‐regulated in TC tissues and cell lines. Down‐regulation of NR2F1‐AS1 and CCND1 suppressed proliferation and migration of TC cells yet greatly enhanced cell apoptotic rate. Silence of NR2F1‐AS1 significantly suppressed TC tumorigenesis in vivo. NR2F1‐AS1 sponged miRNA‐338‐3p to up‐regulate CCND1 expression to promote TC progression. Our study demonstrated that up‐regulation of NR2F1‐AS1 accelerated TC progression through regulating miRNA‐338‐3P/CCND1 axis.  相似文献   

17.
Trafficking of G protein‐coupled receptors plays a crucial role in controlling the precise signalling of the receptor as well as its proper regulation. Metabotropic glutamate receptor 1 (mGluR1), a G protein‐coupled receptor, is a member of the group I mGluR family. mGluR1 plays a critical role in neuronal circuit formation and also in multiple types of synaptic plasticity. This receptor has also been reported to be involved in various neuropsychiatric diseases. Other than the central nervous system, mGluR1 plays crucial roles in various non‐neuronal cells like hepatocytes, skin cells, etc. Although it has been reported that mGluR1 gets endocytosed on ligand application, the events after the internalization of the receptor has not been studied. We show here that mGluR1 internalizes on ligand application. Subsequent to endocytosis, majority of the receptors localize at the recycling compartment and no significant presence of the receptor was noticed in the lysosome. Furthermore, mGluR1 returned to the cell membrane subsequent to ligand‐mediated internalization. We also show here that the recycling of mGluR1 is dependent on the activity of protein phosphatase 2A. Thus, our data suggest that the ligand‐mediated internalized receptors recycle back to the cell surface in protein phosphatase 2A‐dependent manner.

  相似文献   


18.
Lysosomes are essential organelles that function to degrade and recycle unwanted, damaged and toxic biological components. Lysosomes also act as signalling platforms in activating the nutrient‐sensing kinase mTOR. mTOR regulates cellular growth, but it also helps to maintain lysosome identity by initiating lysosomal tubulation through a process termed autophagosome‐lysosome reformation (ALR). Here we identify a lysosomal pool of phosphatidylinositol 3‐phosphate that, when depleted by specific inhibition of the class III phosphoinositide 3‐kinase VPS34, results in prolonged lysosomal tubulation. This tubulation requires mTOR activity, and we identified two direct mTOR phosphorylation sites on UVRAG (S550 and S571) that activate VPS34. Loss of these phosphorylation sites reduced VPS34 lipid kinase activity and resulted in an increase in number and length of lysosomal tubules. In cells in which phosphorylation at these UVRAG sites is disrupted, the result of impaired lysosomal tubulation alongside ALR activation is massive cell death. Our data imply that ALR is critical for cell survival under nutrient stress and that VPS34 is an essential regulatory element in this process.  相似文献   

19.
Quite a few estrogen receptor (ER)‐positive breast cancer patients receiving endocrine therapy are at risk of disease recurrence and death. ER‐related genes are involved in the progression and chemoresistance of breast cancer. In this study, we identified an ER‐related gene signature that can predict the prognosis of ER‐positive breast cancer patient receiving endocrine therapy. We collected RNA expression profiling from Gene Expression Omnibus database. An ER‐related signature was developed to separate patients into high‐risk and low‐risk groups. Patients in the low‐risk group had significantly better survival than those in the high‐risk group. ROC analysis indicated that this signature exhibited good diagnostic efficiency for the 1‐, 3‐ and 5‐year disease‐relapse events. Moreover, multivariate Cox regression analysis demonstrated that the ER‐related signature was an independent risk factor when adjusting for several clinical signatures. The prognostic value of this signature was validated in the validation sets. In addition, a nomogram was built and the calibration plots analysis indicated the good performance of this nomogram. In conclusion, combining with ER status, our results demonstrated that the ER‐related prognostic signature is a promising method for predicting the prognosis of ER‐positive breast cancer patients receiving endocrine therapy.  相似文献   

20.
Intravenous application of high‐dose ascorbate is used in complementary palliative medicine to treat cancer patients. Pharmacological doses of ascorbate in the mM range induce cytotoxicity in cancer cells mediated by reactive oxygen species (ROS), namely hydrogen peroxide and ascorbyl radicals. However, little is known about intrinsic or extrinsic factors modulating this ascorbate‐mediated cytotoxicity. Under normoxia and hypoxia, ascorbate IC50 values were determined on the NCI60 cancer cells. The cell cycle, the influence of cobalt chloride‐induced hypoxia‐inducible factor‐1α (HIF‐1α) and the glucose transporter 1 (GLUT‐1) expression (a pro‐survival HIF‐1α‐downstream‐target) were analysed after ascorbate exposure under normoxic and hypoxic conditions. The amount of ascorbyl radicals increased with rising serum concentrations. Hypoxia (0.1% O2) globally increased the IC50 of ascorbate in the 60 cancer cell lines from 4.5 ± 3.6 mM to 10.1 ± 5.9 mM (2.2‐fold increase, P < 0.001, Mann–Whitney t‐test), thus inducing cellular resistance towards ascorbate. This ascorbate resistance depended on HIF‐1α‐signalling, but did not correlate with cell line‐specific expression of the ascorbate transporter GLUT‐1. However, under normoxic and hypoxic conditions, ascorbate treatment at the individual IC50 reduced the expression of GLUT‐1 in the cancer cells. Our data show a ROS‐induced, HIF‐1α‐ and O2‐dependent cytotoxicity of ascorbate on 60 different cancer cells. This suggests that for clinical application, cancer patients should additionally be oxygenized to increase the cytotoxic efficacy of ascorbate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号