首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In this study we show that nanoparticles of various ferric oxides (hematite, maghemite, amorphous Fe2O3, β‐Fe2O3 and ferrihydrite) incorporated into carbon paste exhibit electro‐catalytic properties towards hydrogen peroxide reduction. The modified paste electrode performances were evaluated and compared with those obtained with Prussian Blue‐modified carbon paste electrode, which represents an excellent chemical mediator towards the H2O2 redox reaction (as widely described in literature). The best catalytic activity was found for carbon paste modified by amorphous ferric oxide with 2–4 nm particle size, which was further tested for possible application as hydrogen peroxide sensor. At pH 7, the limit of detection was 2×10?5 M H2O2 (S/N=3), the calibration curves were linear upto 8.5 mM H2O2 (R2=0.998), the measurement reproducibility (RSD=97%, n=4), the interelectrode reproducibility (RSD=16%, nelectrodes=5) and <3 s response time.  相似文献   

2.
AmperometricSensorsforDeterminationofHydrogenPeroxideBasedonElectronTransferBetweenHorseradishPeroxidaseand1,1'-Dimethylferro...  相似文献   

3.
The cellulose acetate covered Prussian blue modified glassy carbon electrode (GCE/PB/CA) was fabricated as a novel hydrogen peroxide sensor. It was shown by scanning electron microscope (SEM) and atomic force microscope (AFM) that Prussian blue was covered and protected by cellulose acetate perfectly. The modified electrode showed a good electrocatalytic activity for H2O2 reduction in neutral aqueous solution. H2O2 was detected amperometrically in 0.05 mol/L phosphate buffer solutions (pH 7.0, containing 0.1 mol/L KCl as supporting electrolyte) at an applied potential of ?0.2 V (vs. SCE). The response current was proportional to the concentration of H2O2 in the range of 1.0×10?5 mol/L to 2.5×10?4 mol/L with the detection limit of 2.2×10?6 mol/L at a signal to noise ratio 3.  相似文献   

4.
Luminescence spectra of aqueous solutions containing a fixed concentration of tetracycline (TC) and increasing concentrations of Eu3+ were recorded both in the absence and presence of hydrogen peroxide (H2O2). In H2O2‐free solutions in which the Eu/TC molar ratio was varied from 1 : 1 to 8 : 1, the 5D07F0 transition consisted of only one peak at 580 nm. In the presence of H2O2, an extra peak appeared in the spectrum at 578 nm when the Eu/TC molar ratios were above 2.5. A detailed analysis of this spectral region revealed that at lower Eu/TC molar ratios (up to 2 : 1), the 5D07F0 transition experienced a slight blue shift. This indicates that at low Eu/TC molar ratios, the presence of H2O2 leads to two different environments of the trivalent europium ions, which most likely form bridged peroxide complexes with hydrogen peroxide (μ‐H2O2 ligand). Luminescence spectra measured in the presence of molybdate ions, which catalytically decompose H2O2, led to the disappearance of the extra europium(III) site that was formed in the presence of H2O2. The intensity of the hypersensitive 5D07F2 transition did not linearly depend on the H2O2/TC molar ratio. For H2O2/TC ratios up to 10, a sharp linear increase of the peak intensity was observed, but with further increase of the H2O2 concentration, the intensity remained nearly constant. For H2O2/TC ratios above 100, the intensity of this transition even started to decrease, which limits the use of the (tetracycline)europium(III) system to quantify hydrogen peroxide in solution.  相似文献   

5.
A sensor for H2O2 amperometric detection based on a Prussian blue (PB) analogue was developed. The electrocatalytic process allows the determination of hydrogen peroxide at 0.0 V with a limit of detection of 1.3 μmol L?1 in a flow injection analysis (FIA) configuration. Studies on the optimization of the FIA parameters were performed and under optimal FIA operational conditions the linear response of the method was extended up to 500 μmol L?1 hydrogen peroxide with good stability. The possibility of using the developed sensor in medium containing sodium ions and the increased operational stability constitute advantages in comparison with PB‐based amperometric sensors. The usefulness of the methodology was demonstrated by addition‐recovery experiments with rainwater samples and values were in the 98.8 to 103% range.  相似文献   

6.
A newly developed electrochemical sensor for determination of hydrogen peroxide (H2O2) in beverages using a water‐insoluble picket‐fence porphyrin (FeTpivPP) functionalized multiwalled carbon nanotubes (MWNTs) is demonstrated. Introduction of FeTpivPP on MWNTs led to enhanced electron transfer. As a new platform in electrochemical analysis, the resultant sensor showed excellent electrocatalytic activity toward the reduction of H2O2 due to the synergic effect between MWNTs and FeTpivPP, thus leading to highly sensitive amperometric sensing of H2O2 with a detection limit of 0.05 µmol L?1. The developed method is successfully used to detect H2O2 in beverages and shows great promise for routine sensing applications.  相似文献   

7.
《Electroanalysis》2003,15(8):733-738
The electrochemical properties of gold electrode surfaces modified by molybdenum oxide films intercalated with platinum microparticles have been described. The incorporation of Pt microparticles at the oxide film was characterized by PIXE (particle induced X‐ray emission) spectroscopy. The modified electrode showed electrochemical activity at around ?0.5 V in 50 mmol L?1 Na2SO4 supporting electrolyte (pH 3), corresponding to the reduction of protons at platinum sites and further transfer of hydrogen atoms to form reduced molybdenum oxides (bronzes). At 0.1 V, the MoO3 / Pt electrode showed a better performance for hydrogen peroxide oxidation than on platinized gold electrodes. The solution pH has a marked effect on the voltammetric profile and best responses for hydrogen peroxide were obtained at the 5.0 to 6.0 pH range. The activation of the electrode by polarization at negative potentials was also studied and a mechanism by which more platinum sites are available as a consequence of this process was proposed. Calibration plots for hydrogen peroxide were highly linear (r=0.9989) in the 0.2 to 1.6 mmol L?1 concentration range, with a relative standard deviation (RSD)<1%.  相似文献   

8.
The incorporation of carbon nanotubes to a Nafion/tetraruthenated cobalt porphyrin/ glassy carbon electrode (GC/Nf/CoTRP vs GC/Nf/CNTCoTRP) enhanced the amperometric determination of hydrogen peroxide. Both electrodes produced a decrease in the overpotential required for the hydrogen peroxide oxidation in about 100 mV compared to glassy carbon under the same experimental conditions. Nevertheless, for GC/Nf/CNT/CoTRP, the increase in the current is remarkable. The GC/Nf/CoTRP modified electrode gave no significant analitycal signal for hydrogen peroxide reduction. Moreover, a great increase in current is observed with GC/Nf/CNT/CoTRP at ?150mV which suggests a significant increase in the sensitivity of the modified electrode. Scanning electrochemical microscopy (SECM) revealed an enhancement in the electroactivity of the GC/Nf/CNT/CoTRP modified electrode. This fact has been explained in terms of enhanced homogeneity of the electrodic surface as a consecuence of better dispersibility of CNT‐CoTRP produced by a Nafion polyelectrolyte.  相似文献   

9.
A xanthine biosensor was fabricated by the covalent immobilization of xanthine oxidase (XO) onto a functionalized conducting polymer (Poly‐5, 2′: 5′, 2″‐terthiophine‐3‐carboxylic acid), poly‐TTCA through the formation of amide bond between carboxylic acid groups of poly‐TTCA and amine groups of enzyme. The immobilization of XO onto the conducting polymer (XO/poly‐TTCA) was characterized using cyclic voltammetry, quartz crystal microbalance (QCM), and X‐ray photoelectron spectroscopy (XPS) techniques. The direct electron transfer of the immobilized XO at poly‐TTCA was found to be quasireversible and the electron transfer rate constant was determined to be 0.73 s?1. The biosensor efficiently detected xanthine through oxidation at +0.35 V and reduction at ?0.25 V (versus Ag/AgCl) of enzymatically generated hydrogen peroxide. Various experimental parameters, such as pH, temperature, and applied potential were optimized. The linear dynamic ranges of anodic and cathodic detections of xanthine were between 5.0×10?6?1.0×10?4 M and 5.0×10?7 to 1.0×10?4 M, respectively. The detection limits were determined to be of 1.0×10?6 M and 9.0×10?8 M with anodic and cathodic processes, respectively. The applicability of the biosensor was tested by detecting xanthine in blood serum and urine real samples.  相似文献   

10.
Prussian blue analogue nanoparticles doped with Ce(III) (CeHCF) have been synthesized using chitosan (CS) and poly(diallyldimethylammonium chloride) (PDDA) as protective matrix and were cast onto a glassy carbon electrode surface directly. Transmission electron microscopy, UV‐Vis absorption spectroscopy and resonance Rayleigh scattering technique were employed to characterize the PB analogue nanoparticles protected with CS and PDDA. Compared with the bare glassy carbon electrode, the modified electrode exhibited excellent performances for determining H2O2. This work demonstrates the feasibility of the CS‐PDDA‐CeHCF nanoparticles modified glassy carbon electrode for practical sensing applications.  相似文献   

11.
马洁  武海  朱亚琦 《化学通报》2006,69(12):916-920
利用共价键合法,将新亚甲蓝(NMB)与辣根过氧化酶(HRP)修饰于玻碳电极表面,制成一种新型的电流型H2O2传感器。探讨了该传感器在0·1mol/L磷酸缓冲溶液(pH=7·0)中的电化学性质。结果表明,NMB作为介体能够有效地在辣根过氧化酶和电极之间传递电子。测得电子转移系数为0·861,表观反应速率常数为1·27s-1。研究了传感器对H2O2的响应及动力学性质,米氏常数为8·27μmol/L,线性响应范围为2·5~100μmol/L。同时研究了pH、缓冲容量及温度等因素对H2O2传感器的影响。  相似文献   

12.
Vertically aligned copper oxide (CuO) nanowires were synthesized by directly heating copper foil on a hotplate under ambient conditions. The as‐grown CuO nanowires film is mechanically stable and was facilely attached to a glassy carbon (GC) electrode, offering an excellent electrochemical sensing platform. The CuO nanowires electrode shows excellent electrocatalytic response to H2O2 with significantly lower overpotentials for its oxidation and reduction and also exhibits a fast response and high sensitivity for the amperometric detection of H2O2. The novel vertically aligned CuO nanowires electrode is readily applicable to other analytes and has great potential applications in the electrochemical detection.  相似文献   

13.
In this work, an amperometric H2O2 sensor based on TiO2/MWCNTs electrode is reported. TiO2 nanoparticles were synthesized on vertically aligned multiwalled carbon nanotube (MWCNT) arrays by electrodeposition. The morphology of the TiO2/MWCNTs was characterized by scanning electron microscopy (SEM). The electrochemical performance of the TiO2/MWCNTs electrode for detection of H2O2 was investigated by cyclic voltammetry (CV), differential pulse voltammetry (DPV) and chronoamperometry. The TiO2/MWCNTs electrode displays high electrocatalytic activity towards oxidation of H2O2 in 0.1 M phosphate buffer solution (PBS, pH 7.4). At an applied potential of +0.40 V, the TiO2/MWCNTs electrode exhibits a linear dependence (R=0.998) in the H2O2 concentration up to 15.0×10?3 M with a sensitivity of 13.4 μA mM?1 and detection limit of 4.0×10?7 M with signal/noise=3. The optimal response time is less than 5 s with addition of 1 mM H2O2. The TiO2/MWCNTs electrode presents stable, high sensitivity and also exhibits fast amperometric response to the detection of H2O2, which is promising for the development of H2O2 sensor.  相似文献   

14.
A facile, fast, and convenient route was suggested for the fabrication of Prussian blue nano particles (PBNPs) assembled on reduced graphene oxide (RGO) modified glassy carbon electrode (PBNPs|RGO|GCE). RGO was electrodeposited on the surface of GCE and the prepared RGO|GCE was immersed into a ferric‐hexacyanoferrate(III) solution and PBNPs were assembled on the RGO|GCE for a certain period of time. The PBNPs film thickness can be easily controlled by adjusting the assembling duration. The developed PBNPs|RGO|GCE was successfully used for determining hydrogen peroxide, with a linear response over the concentration range 0.5‐400 μM, a good accuracy and precision, detection limit 0.44 μM, and sensitivity 1168 mA M?1 cm?2.  相似文献   

15.
新吖啶酯发光剂测定过氧化氢的研究   总被引:3,自引:0,他引:3  
张帆  庄惠生 《分析化学》1992,20(3):342-344
本文报道了新发光剂氟磺酸-10-甲基-9-(对甲酰基苯基)羧酸吖啶酯测定饮用水和降水中H_2O_2的研究。该方法无需任何催化剂,选择性好,灵敏度高,检测限达1.2×10~(-9)mol/L,线性范围宽(3×10~(-9)~1×10~(-2)mol/L),测定5×10~(-9)mol/L和6.6×10~(-7)mol/L H_2O_2时,相对标准偏差分别为3.2%和1.6%。  相似文献   

16.
《Electroanalysis》2003,15(3):175-182
Three different kinds of glassy carbon (GC‐R, GC‐K, GC‐G) were equally pretreated, further modified with electrochemically deposited Prussian Blue and used as sensors for hydrogen peroxide at an applied potential of ?50 mV (vs. Ag|AgCl). Their performance was evaluated with respect to the following parameters: the coverage and electrochemistry of the electrodeposited Prussian Blue, the sensitivity and the lower limit of detection for hydrogen peroxide, and the operational stability of the sensors. GC‐R showed the best behavior concerning the surface coverage and the operational stability of the electrodeposited Prussian Blue. For this electrode the sensitivity for hydrogen peroxide (10 μM) was 0.25 A/M cm2 and the detection limit was 0.1 μM. Scanning electron microscopy was used to study the surfaces of the three electrodes before and after the electrodeposition of Prussian Blue and to search for the reason for the three different behaviors between the different glassy carbon materials. The Prussian Blue modified GC‐R was also used for the construction of a glucose biosensor based on immobilizing glucose oxidase in Nafion membranes on top of electrodeposited Prussian Blue layer. The operational stability of the glucose biosensors was studied in the flow injection mode at an applied potential of ?50 mV (vs. Ag|AgCl) and alternatively injecting standard solutions of hydrogen peroxide (10 μM) and glucose (1 mM) for 3 h. For the GC‐R based biosensor a 2.8% decrease of the initial glucose response was observed.  相似文献   

17.
将天然高分子壳聚糖(CS)包裹碳包铁的磁性纳米微球(CFN/CS)修饰于玻碳电极表面,并利用戊二醛将血红蛋白(Hb)交联在CFN/CS上,制备了Hb-CFN/CS-GC电极。循环伏安法和电化学交流阻抗法实验结果表明,Hb在CFN/CS-GC电极表面仍保持较好的生物活性,能稳定有效地进行直接电子转移反应。电化学研究表明该修饰电极对H2O2有良好的电催化还原作用,在pH 7.0的磷酸盐(PBS)介质中,H2O2在5.2×10-5~2.3×10-3mol/L浓度范围内,其浓度与还原峰电流呈良好线性关系,检出限为8.7×10-6mol/L。该修饰电极有着良好的重现性和稳定性。  相似文献   

18.
A facile and controllable electrodeposition method was developed to directly attach gold nanoparticles (GNPs) on ordered mesoporous carbon (OMC). The GNPs on OMC substrate were characterized by scanning electron microscopy (SEM), X‐ray diffraction (XRD) and X‐ray photoelectron spectrometer (XPS), respectively. A nonenzymatic hydrogen peroxide (H2O2) sensor was fabricated on GNPs‐OMC/GCE. The sensor demonstrated a fast amperometric response (2.5 s), a wide linear range toward H2O2 concentrations between 2.0×10?6 and 3.92×10?3 M (R=0.999), and a low detection limit of 0.49 µM (S/N=3). Moreover, it exhibited good reproducibility and long‐term stability. The excellent electrocatalytical activity might be attributed to the synergistic effect of OMC and GNPs.  相似文献   

19.
An electrochemical sensor was developed for determination of hydrogen peroxide based on nanocopper oxides modified carbon sol‐gel or carbon ceramic electrode (CCE). The modified electrode was prepared by electrodeposition of metallic copper on the CCE surface and derivatized in situ to copper oxides nanostructures and characterized by scanning electron microscopy (SEM) and X‐ray diffraction (XRD) techniques. The modified electrode responded linearly to the hydrogen peroxide (H2O2) concentration over the range 0.78–193.98 µmol L?1 with a detection limit of 71 nmol L?1 (S/N=3) and the sensitivity of 0.697 A mol?1 L cm?2. This electrode was used as selective amperometric sensor for determination of H2O2 contents in hair coloring creams.  相似文献   

20.
An amperometric chemosensor for the detection of hydrogen peroxide is reported. The sensor is based on 1,4-benzoquinone immobilized on the gold electrode using self-assembled monolayer of short chain symmetrical dithiol as an anchor layer. Sensor analysis was performed by cyclic voltammetry at the potential range from −0.6 V till +0.9 V as well as in the anodic or cathodic potential ranges only. The results indicate oxidative electrochemical decomposition of hydrogen peroxide at the potential of ∼+0.4 V leading to the formation of oxygen while at cathodic potentials a reduction of the formed oxygen as well as of the hydrogen peroxide occur. A decrease in the oxidation potential of hydrogen peroxide on the gold electrode coated by self-assembled monolayer with 1,4-benzoquinone in comparison with that measured on the electrodes coated by the same self-assembled monolayer without 1,4-benzoquinone, indicates electrocatalytic effect of this moiety on oxidative decomposition of hydrogen peroxide. Analytical evaluation of the sensor performance was done in the voltammetric as well as in the chronoamperometric mode. The sensor exhibited linear response over the concentration range till 2.5 mM with a limit of detection ∼4 μM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号