首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 125 毫秒
1.
Fe@Fe_3O_4纳米粒子(NPs)由于Fe核的存在具有很大的饱和磁化率和横向弛豫率,能够表现出比Fe_3O_4 NPs更好的磁共振成像(MRI)和光/磁热治疗效果,并且由于其具备光声和磁共振(MR)造影功能,可引导Fe@Fe_3O_4 NPs对肿瘤进行治疗.该材料因生物相容性好、成像和治疗方式多元化等优点而受到越来越多的关注.通过介绍和总结Fe@Fe_3O_4 NPs的几种成像模式和治疗方式,描述了目前该材料的最新研究进展,以深入了解Fe@Fe_3O_4 NPs在癌症治疗中的潜在应用.  相似文献   

2.
通过阳极氧化法在纯铁片基底上生长Fe_2O_3纳米管阵列薄膜,然后采用水热法在Fe_2O_3纳米管阵列薄膜上负载ZnO纳米棒,制得Fe_2O_3/ZnO复合纳米结构。借助FE-SEM、XRD、TEM、UV-Vis等手段,对不同反应时间下制得的Fe_2O_3/ZnO复合材料的形貌、结构、物相组成及光催化性能进行表征,重点考察了复合结构的亚甲基蓝可见光降解能力。结果表明,在外加电压为55V的条件下阳极氧化450s,所制备的Fe_2O_3纳米管阵列具有高度有序、分布均匀及垂直取向的结构特点,管径约为80nm;在90℃的碱性锌酸盐溶液中,水热反应1.5h后,制得的Fe_2O_3/ZnO复合材料具有最佳的光催化性能,该样品对亚甲基蓝的降解率可达85%。  相似文献   

3.
水溶性磁性Fe_3O_4纳米颗粒由于其良好的生物相容性、超顺磁性等特征,在生物领域常被用来作为磁性载体材料,其广泛的生产和应用增加了它们在环境中释放的可能性,需对其环境生物安全性进行评价.首先合成了水溶性磁性Fe_3O_4纳米纳米粒子,并用透射电子显微镜和马尔文粒度分析仪对其进行形貌分析和表征.然后在不同的浓度下(0、0.72、1.44、3.6 mg/mL)研究了水溶性磁性Fe_3O_4纳米粒子对小麦生长的影响,结果显示随着浓度的增加,磁性Fe_3O_4纳米纳米粒子对小麦生长的抑制越明显,造成生长抑制和根结构损伤.结果证明了水溶性磁性Fe_3O_4纳米颗粒对小麦植物存在一定的生物毒性,其环境排放应该严格限制.  相似文献   

4.
用表面处理稀土氧化物Y_2O_3,GeO_2的方法制备了Y_2O_3/GeO_2/环氧树脂辐射防护材料.采用X射线衍射仪(XRD)研究了材料的微观结构;用多道γ谱仪测试并分析了材料的辐射防护能力.结果表明,制得的材料中的Y_2O_3和GeO_2粒子并未与环氧树脂发生键和反应,Y_2O_3与GeO_2粉末的加入明显提升了材料防护射线的效果.  相似文献   

5.
通过刻蚀Ti_3AlC_2前驱体制得少层Ti_3C_2T_x(DL-Ti_3C_2T_x),以二甲基亚砜为反应溶剂采用溶剂热法控制氧化DL-Ti_3C_2T_x制备了TiO_2/DL-Ti_3C_2T_x复合材料。借助XRD、SEM、TEM、Raman等对相关样品的物相结构及微观形貌进行表征,并通过罗丹明B的光降解实验评价了所制复合材料的光催化性能。结果表明,复合材料DL-Ti_3C_2T_x片层的表面形成了均匀致密的锐钛矿型TiO_2纳米颗粒,通过控制溶剂热温度能够调控复合材料中DL-Ti_3C_2T_x和TiO_2的相对含量,并且当溶剂热温度为100℃时,所制TiO_2/DL-Ti_3C_2T_x复合材料光催化性能最佳。  相似文献   

6.
采用沉淀法制备Fe_2O_3粉体。用XRD、FTIR对样品进行表征,以刚果红为研究对象,紫外光为光源,研究了催化剂前驱体焙烧时间、催化剂前驱体焙烧温度、催化剂用量、刚果红初始浓度、光照时间等对刚果红降解率的影响。结果表明当焙烧时间3 h,焙烧温度400℃,催化剂用量0.3 g,刚果红初始浓度10 mg/时,光催化降解率达到90%以上。  相似文献   

7.
镧系元素(Ln)独特的磁学性质主要来源于其4f外层电子结构.利用Ln磁学性质合成的无机稀土纳米粒子被广泛用作磁共振成像(MRI)造影剂(CAs).总结了近年来磁性无机稀土纳米粒子在不同系列(T_1,T_2以及T_1-T_2) MRI CAs的应用现状及发展前景.  相似文献   

8.
通过简单的溶剂热法制备出Mn-MOF前驱体,然后以Mn-MOF前驱体为模板,在空气环境中,450℃温度下煅烧,得到Mn_2O_3。采用XRD、TG、SEM、CV、GCD等表征手段对所得样品进行结构表征以及性能测试。结果表明,制备的Mn-MOF为棒状结构,棒状Mn-MOF经煅烧后得到竹节结构Mn_2O_3。该种竹节结构Mn_2O_3具有良好的电化学性能,在0.5 mol/L Na_2SO_4水溶液电解液中,电流密度为0.5 A/g时,比电容为149 F/g。此类新型竹节结构Mn_2O_3的开发为Mn_2O_3材料在超级电容器领域的应用开辟新的方向。  相似文献   

9.
纳米SiO2的制备及性能研究   总被引:21,自引:0,他引:21  
 用溶胶—凝胶法制备了纳米SiO2,考察了溶胶的浓度和pH值对凝胶时间的影响,并用FT-IR,XRD和TEM研究了其在热处理过程中的物相及显微结构.结果表明:溶胶浓度和溶胶pH值对凝胶时间影响较大.在温度为600℃时,经过烧结晶化,可制得纳米二氧化硅,其平均粒径20nm,外观形状呈球形,且热稳定性良好.  相似文献   

10.
采用热分析仪、滴管炉等研究了Fe_2O_3对煤焦热解过程的催化作用,借助XRD分析了Fe_2O_3在不同反应温度下的转变产物。结果表明,添加Fe_2O_3后煤焦热解吸热量明显下降,生成烟气中CO、CO_2含量显著上升;Fe_2O_3在1000℃和1100℃时的主要转化产物分别为Fe_3O_4和FeO,在1200℃时转变为Fe_3O_4、FeO和Fe。  相似文献   

11.
以水热合成的钴掺杂Mn3O4作为模板,通过固相反应制备尖晶石LiMn2O4。XRD谱图和SEM照片显示制备的LiMn2O4具有岩石状结构并呈现良好的结晶性,同时Co的引入能够引起LiMn2O4晶格的收缩。作为锂离子电池正极材料,Co含量的增加能够提高循环稳定性但降低材料放电比容量,3% Co掺杂的LiMn2O4在0.5 C的电流密度下,经过100次循环后,剩余放电比容量达101.6 mAh·g-1;在10 C的电流密度下,放电比容量可维持在81.0 mAh·g-1,优于未掺杂的LiMn2O4。这是由于Co的引入能够稳定LiMn2O4晶体结构并抑制循环中的姜-泰勒扭曲。  相似文献   

12.
采用溶胶-凝胶表面包覆法制备了纳米Fe2O3-Al2 O3复合材料, 利用X射线衍射和透射电镜对样品的物相、 粒度和形貌进行了研 究. 结果表明, α-Fe2O3掺杂降低了Al2O3相变温度, 在900 ℃可以得到稳定的α-Al2O3相.  相似文献   

13.
采用溶胶-凝胶法制备纳米Al2O3颗粒,通过粉末冶金法制备氧化铝铜(Cu-Al2O3)。采用X射线光电子能谱仪、扫描电子显微镜、洛氏硬度仪和涡流计分别测试了Cu-Al2O3的结合能、微观组织、硬度和导电率。结果表明:随Al2O3颗粒含量的增加,Cu-Al2O3的硬度先升高后降低,当Al2O3颗粒的质量分数达到0.084%时,Cu-Al2O3的硬度达到最大值75.73(HRB)。Cu-Al2O3的导电率随着Al2O3颗粒含量的增加逐渐下降。Al2O3颗粒的质量分数为0.084%时为最佳值,Cu-Al2O3的硬度达到最大值,导电率达到69.1% IACS。  相似文献   

14.
Superparamagnetism amination nanocrystals Fe3O4 with 3-aminopropyltriethyloxy silane (APTES) were prepared by modified co-precipitation method. Next, 4-5 nm gold nanoparticles, prepared by classical Frens procedure, were coated on the surface of the amination Fe3O4 by self-assembly technology. The prepared Fe3O4@Au nanocomposite particles were investigated by transmission electron microscopy (TEM), UV-vis, infrared spectrum (FT-IR), and vibrating sample magnetometer (VSM) in order to elucidate the morphology, optics and magnetic properties of the nanocomposites. Their uniform distribution of particle size, which is about 15 nm, and good magnetic responsiveness were observed. In view of the fact that Fe3O4 owns superparamagnetism and that nano-gold can readily combine with biological molecules, glucose oxidase (GO x ) was chosen as a model to penetrate the condition of immobilizing enzyme, and enzymatic properties of resultant immobilized enzyme were studied as well. By systematic optimization, we established that at 28°C, and pH (5.5) and when mole ratio of Fe3O4:HAuCl4 was 0.5:1, the immobilization provided the best results. Finally, we are glad to find that the immobilized enzyme exhibits excellent thermostability in addition to its better stability than free enzyme. Thus, herein described immobilized enzyme could be used repeatedly with the assistance of an external magnetic field. Supported by the Science Foundation of Sichuan Province, China (Grant No. 2005A033) and Science Foundation of Sichuan Agricultural University for Distinguished Young Teachers (Grant No. 007202)  相似文献   

15.
以固相合成法制备了铁酸铋(BiFeO3,简称BFO)掺杂的铌铟酸铅-铌镁酸铅-钛酸铅(Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3,简称PIN-PMN-PT)多铁性陶瓷材料,X射线衍射(XRD)测试结果表明:样品具有钙钛矿结构,电滞回线显示其铁电性良好,剩余极化值(Pr)可达18 μC·cm-2.由于BiFeO3掺杂后,样品电矩减小,氧空位增多,使其铁电畴翻转困难,样品的电性能略有下降,但是其磁性能随BiFeO3掺入量的增加而逐渐增强,且样品居里温度(Tm)为200℃左右.该材料在电磁学领域有望成为具有应用前景的多铁性材料.  相似文献   

16.
为了研究魔芋葡甘聚糖/纳米Fe_3O_4_静电纺丝膜,运用流变仪分析纳米Fe_3O_4对KGM溶胶流变性能的影响,以期为制备复合的纺丝液的浓度和配比提供了指导。结果表明:KGM/纳米Fe_3O_4复合溶胶是一种假塑性流体;复合溶胶的粘度、线性粘弹区域范畴、屈服应力值、模量等四个指标均与纳米Fe_3O_4掺杂比的掺杂比呈正比关系,从剪切性质分析其体系纳米Fe_3O_4质量浓度不应超过1.2%。通过频率扫描分析,纳米Fe_3O_4与KGM之间存在相互作用,随着纳米Fe_3O_4粒子含量的增加使得与KGM作用增加,从而使体系形成稳定网络结构,使复合溶胶的稳定性更高,因此将魔芋葡甘聚糖/纳米Fe_3O_4制备静电纺丝膜具有一定可行性。  相似文献   

17.
采用水热法和溶胶凝胶法制备Fe3O4@SiO2纳米颗粒,经表面镍刻蚀得到Fe3O4@NiSiO3磁性纳米催化剂。利用XRD、TEM和VSM等手段表征催化剂的晶体和表面结构。构建类均相催化臭氧化体系,考察其催化降解对苯二甲酸性能。结果表明:在臭氧通入量10.52 mg.min-1、催化剂投加量40 mg.L-1和初始溶液pH=9的条件下,催化臭氧化反应20 min时对苯二甲酸降解率为78.13%,TOC去除率27.25%;5次循环实验后,PTA降解率仅下降2.75%。  相似文献   

18.
通过溶剂热法和溶胶凝胶法制备Fe3O4@NiSiO3纳米催化剂,并利用TEM、XRD、VSM、BET进行表征。构建非均相芬顿氧化体系,由单因素实验得出在最佳降解条件为, pH值为5.5、催化剂投加量为1.00 g.L-1、H2O2投加量为2.5%时,罗丹明B的降解率达95%以上。利用磁性分离催化剂并重复利用5次,罗丹明B降解率无明显降低,证明Fe3O4@NiSiO3纳米催化剂重复利用性能良好。同时,考察了该催化剂对其它四种染料:酸性大红3R、孔雀石绿、甲基橙、亚甲基蓝的催化芬顿氧化降解性能。结果表明,孔雀石绿、罗丹明B、亚甲基蓝的降解率均达95%,但偶氮类染料降解率较低。通过对比实验进一步研究表明,Ni元素对芬顿反应起促进作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号