共查询到20条相似文献,搜索用时 30 毫秒
1.
The internal riverine processes acting upon phosphorus and dissolved silicon were investigated along a 55 km stretch of the River Swale during four monitoring campaigns. Samples of river water were taken at 3 h intervals at sites on the main river and the three major tributaries. Samples were analysed for soluble reactive phosphorus, total dissolved phosphorus, total phosphorus, dissolved silicon and suspended solid concentration. Mass‐balances for each determinand were calculated by comparing the total load entering the river with the total load measured at the downstream site. The difference, i.e. the residual load, showed that there was a large retention of phosphorus and silicon within the system during the March 1998 flood event, but the other three campaigns produced net‐exports. Cumulative residual loads were calculated for each determinand at 6 h intervals throughout each campaign. This incremental approach showed that the mass‐balance residuals followed relatively consistent patterns under various river discharges. During stable low‐flow, there was a retention of particulate phosphorus within the system and also a retention of total dissolved phosphorus and soluble reactive phosphorus, most likely caused by the sorption of soluble phosphorus by bed‐sediments. In times of high river‐discharge, there was a mobilization and export of stored bed‐sediment phosphorus. During overbank flooding, there was a large retention (58% of total input) of particulate phosphorus within the system, due to the mass deposition of phosphorus‐rich sediment onto the floodplain. Soluble phosphorus was also retained within the system by sequestration from the water column by the high concentration of suspended solids. The dissolved silicon mass‐balance residuals had a less consistent pattern in relation to river discharge. There was a large retention of dissolved silicon during overbank flooding, possibly due to sorption onto floodplain soil, and net‐exports during periods of both stable low‐flow and rising limbs of hydrographs, due to release of dissolved silicon from pore‐waters. Copyright © 2001 John Wiley & Sons, Ltd. 相似文献
2.
Jiongxin Xu 《水文研究》2013,27(18):2623-2636
Fenwei Graben is a famous sediment sink. The Longmen‐Sanmexia sediment sink of middle Yellow River is located in the middle part. Using the sediment budget based on annual data from the period 1920–2006 and flood‐event data from 154 flood events from the period 1950–1985, the variations in sediment storage, release and transport have been analysed. Data from different methods and sources indicate that, during an 1800‐year period, the variation of sedimentation rate in this sink has undergone a cycle from increase to decline; the cause for this can be found in the changes in the manner and intensity of human activities. Over 87 years, sediment storage in this sink can be separated into four stages which showed different trends, depending on changing human activities, such as reservoir construction, soil and water conservation and water diversion. Stepwise multiple regression shows that the runoff and sediment yield from three major source areas have differing influences on sediment storage in the sink. Copyright © 2012 John Wiley & Sons, Ltd. 相似文献
3.
Many upland river catchments in the UK have been historically mined for metals such as lead (Pb) and zinc (Zn), and as part of the mining process large quantities of metal contaminated sediment were released into the river system. The levels of sediment associated heavy metal contamination in river systems are largely controlled by the volumes of contaminated sediment released into the river and fluvial processes (e.g. erosion and deposition). As a consequence, the contamination patterns are often highly variable, which can make it difficult to create accurate assessments of the volumes of contaminated sediment remaining within the system. This paper uses a combination of techniques to establish the volumes of metal contaminated sediment remaining within the River Swale, UK. Firstly, using detailed field sampling and a geographical information system (GIS), it estimates the volumes of sediment remaining within one formerly mined tributary (Gunnerside Beck) which is then extrapolated to represent the contaminant volumes on other tributaries of the River Swale. Secondly, combining fresh field data with a range of existing data, volumes of contaminated sediment on the main stream of the River Swale are established. This two tier approach shows that significant volumes of contaminated sediment remain within the River Swale, with over 32 000 tonnes of Pb within the mined tributaries and 123 000 tonnes within the main channel belt of the River Swale itself. This represents approximately 28% of the Pb produced in the Swale catchment. Given these volumes and present day rates of removal, it may take over 5000 years for all of the metal rich sediment to be removed from the catchment. If the contaminated sediment is used as a tracer, present day rates of reworking of floodplain sediment can be calculated to be 0·02% per year. Copyright © 2008 John Wiley & Sons, Ltd. 相似文献
4.
Nathalie E. M. Asselman 《水文研究》1999,13(10):1437-1450
The behaviour of suspended sediment in rivers is often a function of energy conditions, i.e. sediment is stored at low flow and transported under high discharge conditions. The timing of maximum sediment transport can, however, also be related to mixing and routing of water and sediment from different sources. In this study suspended sediment transport was studied in the River Rhine between Kaub and the German–Dutch border. As concentrations decrease over a runoff season and as the relationship between water discharge and suspended sediment concentrations during most floods is characterized by clockwise hysteresis, it is concluded that sediment depletion occurs during a hydrological year and during individual floods. However, analyses of the sediment contribution from the River Mosel indicate that clockwise hysteresis may result from sediment depletion as well as from early sediment supply from a tributary. Thus, although the suspended sediment behaviour in the downstream part of the River Rhine is partly a transport phenomenon related to energy conditions, mixing and routing of water from different sources also plays an important role. Suspended sediment transport during floods was modelled using a ‘supply‐based’ model. Addition of a sediment supply term to the sediment rating curve leads to a model that produces better estimates of instantaneous suspended sediment concentrations during high discharge events. A major constriction of the model is that it cannot be used to predict suspended sediment concentrations as long as the amount of sediment in storage and the timing of sediment supply are unknown. Copyright © 1999 John Wiley & Sons, Ltd. 相似文献
5.
6.
Abstract This paper presents a reach-scale sediment balance of a large impounded Mediterranean river (the lower Ebro, 1998–2008). Multi-temporal sediment storage and the influence of floods and tributaries on the sediment load were examined using continuous discharge and turbidity records. The mean annual suspended sediment load at the reach outlet (Xerta) is 0.12?×?106 t, corroborating previous results. Suspended sediment concentrations were low (SSCmean?=?13 mg L-1), attaining a maximum of 274 mg L-1. Erosion processes (channel-scour, bank erosion) are dominant, and net export of sediment occurs over the long term. Unexpectedly, ephemeral tributaries were found to contribute significantly: sediment delivered during torrential events attained 5% of the Ebro annual load, and was even larger than that in flushing flows. Overall, most of the suspended sediment load is transported by floods (up to 65% in some years). The results constitute basic information to underpin current management actions aiming to achieve the sustainability of the riverine and deltaic system. Editor D. Koutsoyiannis; Associate editor D. Hughes Citation Tena, A., Batalla, R.J. and Vericat, D., 2012. Reach-scale suspended sediment balance downstream from dams in a large Mediterranean river. Hydrological Sciences Journal, 57 (5), 831–849. 相似文献
7.
Lishan Ran Xiankun Yang Mingyang Tian Hongyan Shi Shaoda Liu Ruihong Yu Yuanyuan Zhou 《地球表面变化过程与地形》2020,45(8):1777-1788
Floods have become increasingly important in fluvial export of water, sediment and carbon (C). Using high-frequency sampling, the export of water, sediment and C was examined in the Wuding River catchment on the Chinese Loess Plateau. With groundwater as an important contributor to runoff all year round, floods were relatively less important in the export of water. However, large floods were disproportionately important in exporting sediment and inorganic C (DIC) and organic C (DOC and POC). The three largest floods in each year transported 53.6–97.3 and 41.4–77% of the annual sediment and C fluxes, respectively. An extreme flood in 2017 alone contributed 94.6 and 73.1% of the annual sediment and C fluxes, respectively, in just 7 days, which included 20.3, 92.1 and 35.7% of the annual DOC, POC and DIC fluxes, respectively. A stable carbon isotope (δ13C) analysis of POC indicated that modern soils and C3 plants were its primary source. Furthermore, floods greatly accelerated CO2 degassing due to elevated gas transfer velocity, although stream water CO2 partial pressure (pCO2) exhibited a decreasing trend with flow discharge. Although these results illustrated that increasing runoff diluted pCO2, the timing and magnitude of floods were found to be critical in determining the response of pCO2 to flow dynamics. Low-magnitude floods in the early wet season increased pCO2 because of enhanced organic matter input, while subsequent large floods caused a lower pCO2 due to greatly reduced organic matter supply. Finally, continuous monitoring of a complete flood event showed that the CO2 efflux during the flood (2348 ± 664 mg C m–2 day–1) was three times that under low-flow conditions (808 ± 98 mg C m–2 day–1). Our study suggests that infrequent, heavy storm events, which are predicted to increase under climate change, will greatly alter the transport regimes of sediment and C. © 2020 John Wiley & Sons, Ltd. 相似文献
8.
Flash floods are the highest sediment transporting agent,but are inaccessible for in-situ sampling and have rarely been analyzed by remote sensing technology.Laboratory and field experiments were done to develop linear spectral unmixing(LSU)remote sensing model and evaluate its performance in simulating the suspended sediment concentration(SSC)in flash floods.The models were developed from continuous monitoring in the laboratory and the onsite spectral signature of river bed sediment deposits and flash floods in the Tekeze River and in its tributary,the Tsirare River.The Pearson correlation coefficient was used to determine the variability of correlations between reflectance and SSCs.The coefficient of determination(R2)and root mean square of error(RMSE)were used to evaluate the performance of the generated models.The results found that the Pearson correlation coefficient between SSCs and reflectance varied based on the level of the SSCs,geological colors,and grain sizes.The performance of the LSU model and empirical remote sensing approaches were computed to be R2?0.92,and RMSE-±0.76 g/l in the Tsirare River and R2-0.91,and RMSE-±0.73 g/l in the Tekeze River and R2?0.81,RMSE-±2.65 g/l in the Tsirare river and R2?0.76,RMSE-±10.87 g/l in the Tekeze River,respectively.Hence,the LSU approach of remote sensing was found to be relatively accurate in monitoring and modeling the variability of SSCs that could be applied to the upper Tekeze River basin. 相似文献
9.
Ana Carolina Sarmento Buarque Namrata Bhattacharya-Mis Maria Clara Fava Felipe Augusto Arguello de Souza Eduardo Mario Mendiondo 《水文科学杂志》2020,65(7):1075-1083
ABSTRACTThe city of São Carlos, state of São Paulo, Brazil, has a historical coexistence between society and floods. Unplanned urbanization in this area is a representative feature of how Brazilian cities have developed, undermining the impact of natural hazards. The Gregório Creek catchment is an enigma of complex dynamics concerning the relationship between humans and water in Brazilian cities. Our hypothesis is that social memory of floods can improve future resilience. In this paper we analyse flood risk dynamics in a small urban catchment, identify the impacts of social memory on building resilience and propose measures to reduce the risk of floods. We applied a socio-hydrological model using data collected from newspapers from 1940 to 2018. The model was able to elucidate human–water processes in the catchment and the historical source data proved to be a useful tool to fill gaps in the data in small urban basins. 相似文献
10.
Bernadette Quémerais Ken R. Lum Claire Lemieux 《Aquatic Sciences - Research Across Boundaries》1996,58(1):52-68
Samples of raw water were collected in the St. Lawrence River during six sampling trips from August 1990 to April 1992. Water samples were analyzed for both dissolved and particulate phases for five trace metals. Partition coefficients (Kd) and metal fluxes were calculated in order to determine metal transport. A mass balance equation was used for the determination of the major metal sources to the St. Lawrence River and an estimation of metal loadings to the estuary was made. Average dissolved metal concentrations were found to be Cd 10 ng/L, Co 74 ng/L, Cu 64 ng/L, Fe 69 µg/L and Mn 700 ng/L. Particulate concentrations were (in µg/g) 1.68 for Cd, 31 for Co, 73 for Cu, 25 mg/g for Fe and 1.69 mg/g for Mn. Co, Fe and Mn were transported essentially in the particulate phase while Cd and Cu were predominantly found in the dissolved phase at 56% and 48% of the total metal concentration respectively. Log Kd values varied from 5.1 (for Cu) to 6.8 (for Mn). In the dissolved phase the major sources were found to be the Great Lakes and the Ottawa River whereas in the particulate phase Québec tributaries appear to be the most important. Industrial inputs are quite important in both the dissolved and the particulate phases for Cd, whereas other sources are very variable, especially for the dissolved phase. 相似文献
11.
Abstract The reassessment of flood risk at York, UK, is pertinent in light of major flooding in November 2000, and heightened concerns of a perceived increase in flooding nationally. Systematic flood level readings from 1877 and a wealth of documentary records dating back as far as 1263 AD give the City of York a long and rich history of flood records. This extended flood record provides an opportunity to reassess estimates of flood frequency over a time scale not normally possible within flood frequency analysis. This paper re-evaluates flood frequency at York, considering the strengths and weaknesses in estimates resulting from four contrasting methods of analysis and their corresponding data: (a) single-site analysis of gauged annual maxima; (b) pooled analysis of multi-site gauged annual maxima; (c) combined analysis of systematic annual maxima augmented with historical peaks, and (d) analysis of only the very largest peaks using a Generalized Pareto Distribution. Use of the historical information was found to yield risk estimates which were lower and considered to be more credible than those achieved using gauged records alone. Citation Macdonald, N. & Black, A. R. (2010) Reassessment of flood frequency using historical information for the River Ouse at York, UK (1200–2000). Hydrol. Sci. J. 55(7), 1152–1162. 相似文献
12.
Sediments are an essential habitat compartment in rivers, which is a subject to dynamic transport processes. In many rivers, the fine deposited sediments are contaminated with heavy metals and organic compounds. Contaminated deposits are considered as potential hot spots because of the risk of the mobilization under erosive hydraulic conditions. Numerical models for particulate contaminant transport are then necessary and can be applied to estimate and predict the potential impact of mobilized contaminants as an important contribution to sediment management. This paper focuses on the quantification of the amount of contaminated sediments resuspended during the extreme flood event in 1999 and the prediction of deposition one year after the flood event. To assess such erosive flood event, a 2D numerical transport model was developed to analyse the dynamics of erosion and sedimentation processes in the headwater of a cross dam at the Upper Rhine River. The dam consists of a weir, a hydropower plant, and a navigation lock. As the weir is operating only for flood management, a huge amount of sediment highly contaminated with the hexachlorobenzene (HCB) was deposited in the weir zone. Therefore, numerical simulations were performed to determine the spatial and temporal distribution of deposited contaminated sediments as depending on the river discharge and its distribution to the hydraulic structures. The numerical investigation presented here is taken as a retrospective analysis of the contaminated sediment dynamics in the headwater to improve future sediment management. 相似文献
13.
This study provides data on the fluvial sediment transport at the Eastern Mediterranean, an area in which the regional importance for comparative study has often been raised by investigators but the data are rather scarce. We analysed long‐ and short‐term hydrologic and sedimentological data from one of the largest coastal streams of Israel, Qishon River (1100 km2), and its estuarine environment. The results indicate that during 65 years (1944–2009), a total 140 floods have contributed to the sea an amount of approximately 2.58 × 106 tons of sediment. During this period, (i) the number of floods with a return period of more than 10 years has almost doubled during the last 30 years, and (ii) the mean annual discharge during last 10 years increased by approximately 175%. The analysis of the short (2 years) hydrological and sediment data revealed that approximately 30% of the upstream channel loads do not reach the river mouth and are deposited along the channel bed, even during major flood events. This observation was attributed largely to the facts that the lower river bed is incised below sea level, to the very low slopes and to the correspondingly low stream power and transport capacity. The results of this study highlight the effect of interchannel dynamics as well as the constraints of interaction between fluvial system and estuarine processes on sediment transport. Copyright © 2012 John Wiley & Sons, Ltd. 相似文献
14.
WATERQUALITYSIMULATIONOFHEAVYMETALTRANSPORTATIONINTHEYELLOWRIVERSHENXianchen1,FENGHuihua2,WANGFengrong3andLIULinhua4ABSTRACTA... 相似文献
15.
The Ganga River is one of the largest river systems in the world that has built extensive alluvial plains in northern India. The stretch of the Lower Ganga River is vulnerable to siltation because of: (a) the naturally low slope in the alluvial stretch; (b) the confluence of several highly sediment-charged rivers such as the Ghaghra, Gandak, and Kosi; and (c) the reduction in non-monsoon flows because of upstream abstractions of both surface and groundwater. Additionally, the Farakka barrage has impacted the morphology of the Ganga River significantly, both upstream and downstream of the barrage. Large-scale siltation in several reaches has reduced the channel capacity, leading to catastrophic floods in this region even at low discharges. This work has utilized historical remote sensing data and UAV surveys to reconstruct channel morphodynamics and compute sediment volumes accumulated in the channel belt along the Lower Ganga River between Buxar and Farakka. The work was carried out by dividing the total length of the river into four continuous stretches: (a) Buxar–Gandhighat (GW1, 160 km); (b) Gandhighat–Hathidah (GW2, 106 km); (c) Hathidah–Azmabad (GW3, 182 km); and (d) Azmabad–Farakka (GW4, 132 km). We document that major ‘hotspots’ of siltation have developed in several reaches of the Lower Ganga during the last four to five decades. Sediment budgeting using planform maps provides estimates of ‘extractable’ volumes of sediment in GW1, GW2, GW3, and GW4 as 656 ± 48, 706 ± 52, 876 ± 71, and 200 ± 85 Mm3, respectively. These estimates are considerably lower than those computed from the hydrological approach using observed suspended sediment load data, which assumes uniform sedimentation between two stations. Further, our approach provides reach-scale hotspots of aggradation and estimates of extractable sediment volumes, and this can be very useful for river managers to develop a strategic sediment management plan for the given stretch of the Ganga River. 相似文献
16.
Flow records, rising‐stage sediment samplers, and a sand suspension model are used to examine suspended sediment concentrations during major floods caused by tropical cyclones TC Joni and TC Kina in the Rewa River, Fiji. The highest concentrations of total suspended solids were measured during the early stages of TC Kina. The suspension model predicts higher sand concentrations for TC Kina compared with TC Joni because of the larger slope and higher shear stresses during Kina. Extremely high wash load concentrations early in TC Kina are at least partly due to remobilization of fine sediment deposited during the earlier TC Joni flood. Samples from the TC Kina had volumetric concentrations larger than 5%, indicating hyperconcentrated streamflows. Mass‐density shear stresses in the hyperconcentrated flows are up 1·6 times larger than clear‐water shear stresses, but they occur early during low stages of the flood and probably do not result in severe bed erosion. Copyright © 2002 John Wiley & Sons, Ltd. 相似文献
17.
Hydrological process in arid zones differs substantially from that in better documented humid environments. The ponding point for infiltration is reached within 10 mins of first rain and overland flow forms the major component of basin runoff. Drainage densities are high, approaching 100 km.km?2, maximising the opportunity for both water and eroded soil to reach the channel network. The typical flood bore is not as abrupt as the mythology of desert streams would suggest. Nevertheless, the time of rise of the flood hydrograph is usually between 4 and 16 mins, giving credance to the notion of ‘flash flood’. Measured flows remain subcritical in the main, though Froude number exceeds unity for short periods around peak discharge. Flow is exceedingly turbulent, with Reynolds number > 105 even for much of the recession limb. As a result, suspended sediment concentrations by size grade are shown to be hydraulically controlled. However, the high degree of turbulence and wide availability of sediment from hillslope and channel sources also means that the mean size of the suspended load varies systematically with flow parameters. In this respect, ephemeral streams differ from perennial counterparts in humid environments where no clear-cut relationships exist. There is greater prospect of deriving a physically deterministic model of suspended sediment transport in desert streams. Implications for soil erosion and reservoir siltation are discussed, and sediment is traced from its source to its various sinks within the drainage basin. 相似文献
18.
《水文科学杂志》2013,58(6):899-915
Abstract The results are described of 16 years operation of a measuring station for the automatic recording of water discharge, bed load and suspended sediment transport in the Rio Cordon catchment, a small alpine basin (5 km2) located in northeastern Italy. Hillslope erosion processes were investigated by surveying individual sediment sources repeatedly. Annual and seasonal variations of suspended sediment load during the period 1986–2001 are analysed along with their contribution to the total sediment yield. The results show that suspended load accounted for 76% of total load and that most of the suspended sediment transport occurred during two flood events: an extreme summer flash flood in September 1994 (27% of the 16-years total suspended load) and a snowmelt-induced event in May 2001 accompanied by a mud flow which fed the stream with sediments. The role of active sediment source areas is discussed in relation to the changes in flood peak—suspended load trends which became apparent after both the 1994 and the 2001 events. 相似文献
19.
全世界都在评论三峡工程的修建,这些评论经常是不太客观的.本文从正负两方面对三峡工程进行了讨论,重点在防洪工程和区域经济方面.作者认为修建三峡工程作为发电的功能远大于防洪的功能.尽管上游来的洪峰经过三峡水库调蓄后能够被削弱.但中游的洪水风险仍然很大.一般而言,中游地区的洪水是大降水事件的产物.三峡工程不可能完全控制中游的洪水.三峡水库发电对中国中部及周边地区经济的可持续发展将产生积极作用,也将能确保东部沿海地区尤其是上海市电能的供给. 相似文献
20.
Metals such as Pb, Zn, Cd and Cu from historical mining activity have been used as stratigraphic markers for dating and provenancing vertically accreted, fine-grained floodplain overbank deposits. This study presents evidence for chemical remobilization of these metals within overbank sediments in the Tyne basin, UK. The evidence includes: breakdown of metal-bearing minerals (sulphides, carbonates, iron and manganese oxyhydroxides); shifts of chemical fractions within zones of relatively low pH towards more soluble and reactive phases; and accumulation of secondary iron and manganese oxyhydroxides at levels related to fluctuating water-table levels or to the breakdown of organic matter. All of this suggests that fine, centimetre-scale, chemostratigraphy using metal concentrations and ratios is unlikely to provide reliable data in river systems that have experienced, or are experiencing, major changes in water-table levels, or pedogenesis. Coarse tens of centimetre- to metre-scale, chemostratigraphy, when applied with caution, may still provide a means of delineating contaminated units. © 1998 John Wiley & Sons, Ltd. 相似文献