首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 92 毫秒
1.
微波系统对功率放大用的硅功率晶体管的微波输出功率、增益、效率等性能指标提出了越来越高的要求。南京电子器件研究所先后在 P,L,S,C波段硅微波功率晶体管研究领域取得进展。最近又研制成功工作频率 2 .2~ 2 .4GHz,脉冲宽度 1 0 0μS,占空比 1 0 % ,输出功率大于 1 1 0 W,功率增益大于 8.0 d B,效率大于 45 %的硅脉冲功率晶体管。微波功率晶体管设计制造的重点和难点主要有如下三个方面 :1 .克服微波寄生参数 ,提高微波增益性能 ;2 .克服基区大注入效应 ,提高功率容量 ,保持大功率条件下的微波性能 ;3.克服大功率应用所带来的热效应 …  相似文献   

2.
3.
现代雷达和通讯系统要求不断地提高微波功率器件的功率、效率以及带宽.SiCMESFET具有高功率密度、高工作电压等优势,成为目前国际上重点研究的微波功率器件之一.  相似文献   

4.
大功率GaN HEMT器件在工作时较高的热流密度引发器件高温,而高温会显著影响器件性能及可靠性.从不同器件结构设计出发,结合器件热量传递理论,建立了器件热阻模型;采用高速红外热像仪试验分析了器件结构对GaN HEMT器件稳态热特性的影响,定量给出了不同总栅宽、不同单指栅宽、不同栅间距在不同功率密度下的稳态温升.相关结果...  相似文献   

5.
针对电子元件在瞬态传热中的热惯性问题,对芯片在热功率信号作用下的温度动态响应特性进行识别。根据芯片温度对芯片发热功率的阶跃响应曲线,求得芯片上关键点的传递函数;根据芯片温度的方波响应曲线和正弦响应曲线,重点对热功率信号给芯片造成的温度冲击与信号周期之间的关系进行分析。该研究对提高电子元件抵抗热冲击和热疲劳的能力具有指导意义。  相似文献   

6.
介绍了对微波功率器件开展的动态加速寿命试验方法和技术的研究。主要阐述了实现振荡式微波动态寿命试验的方法 ,以及不同于常规的对受试功率器件进行内部式加热控温的技术研究。  相似文献   

7.
为开展微波功率器件动态加速寿命试验,建立了一套由计算机实时监测的微波动态试验系统.采用微带电路剥离以及加热部件与其他电路的隔热连接等方法,实现了对每个器件进行独立的内腔式加热,从而单独提高受试器件环境温度,保证了高温应力下微波动态电路的稳定性和可靠性.同时编制了计算机程序软件,解决了参数校准、参数提取等方面存在的误差修正及提高测试精度等技术问题,实现了对试验过程的实时监测和数据的完整保存.  相似文献   

8.
在微波器件应用领域不断扩展的趋势下,对微波器件可靠性的要求也在日益提升。在评估微波器件的可靠性时,射频动态老化试验是非常重要的一个试验。试验系统的实用性、经济型和可靠性对评估的准确性和安全性有着直接的影响。文章将微波混频器作为研究对象,搭建了射频动态老化系统,提高了电路系统的稳定性。实践证明,利用此系统可以更好地完成微波器件的老化过程,相较于静态老化系统有了显著的改进和提升。  相似文献   

9.
GaAs场效应微波功率器件稳态热场分析的等效结构模型   总被引:1,自引:5,他引:1  
张鸿欣 《半导体学报》1998,19(8):591-596
提出了用于计算GaAs场效应微波功率器件峰值沟道温度的等效结构模型.其中底座与芯片等截面的等效厚度处理和多胞单胞化处理,使计算工作量下降约二个数量级.计算的峰值沟道温度与修正(包括了胞内热场分布影响、胞间热场分布影响和瞬态冷却过程影响)后的电学法测量值的差别约为3℃.文中还用此模型模拟了若干工艺参数对峰值沟道温度的影响  相似文献   

10.
曾绍群  徐海峰  刘贤德  李再光 《中国激光》1996,23(12):1087-1090
报道了一种弱相于激光干涉测温方法.以1.3μmInGaAsP半导体激光为微探针.实时测量了功率晶体管内部结点的瞬态热特性,该方法具有响应速度快、完全非侵人性、空间分辨率高、测温范围广等优点,适合于测试Si、GaAs、InP等材料的功率电子和光电子器件的瞬态热特性.  相似文献   

11.
微波功率晶体管是微波功率放大器中的核心器件,其热性能在很大程度上决定于封装管芯的管壳.针对某型号的微波功率晶体管在进行生产筛选的功率老化试验时出现的热失效问题进行分析与讨论,最终确定器件管壳内用于烧结管芯的氧化铍(BeO)上的多层金属化层存在质量缺陷,使管芯到BeO的热阻增大,因此出现了老化时部分器件失效现象.提出了预防措施,既可避免损失,也能保证微波功率晶体管在使用中的可靠性.  相似文献   

12.
对影响微波硅功率双极型晶体管脉冲波形顶降、顶升和增益压缩特性的器件设计、工艺和使用因素进行了分析.脉冲顶降的本质原因是结温上升,结温又同芯片特性、内匹配电路与芯片键合一致性密切相关;脉冲顶降还与器件在电路中的工作状态相关.脉冲顶升主要是与肖特基势垒接触和较低的器件工作温度有关;影响增益压缩的主要原因是电流饱和与电压饱和...  相似文献   

13.
采用自主开发的工艺加工技术和设计方法,直接将两个微波SiC MESFET管芯在管壳内部进行并联,实现了器件在S波段脉冲状态下(工作频率2GHz,脉冲宽度30μs,占空比10%)输出功率大于30W、功率增益12dB、功率附加效率大于30%的性能指标。由于直接采用管芯并联结构,省略了内匹配网络,器件的体积和重量较以往的Si微波双极功率晶体管大为降低;采用高温氧化技术克服了传统MESFET工艺中PECVD介质产生较高界面态的不足,减小了器件的泄漏电流,提高了器件性能。器件的研制成功,初步显示了SiC微波脉冲功率器件在体积小、重量轻、增益高、脉冲大功率输出和制作工艺简单等方面的优势。  相似文献   

14.
介绍了功率器件装配过程中控制芯片烧结工艺参数的重要性,用显微红外热像仪测试了器件烧结工艺参数优化前后的微波瞬态热像,由热像测试数据计算出器件的热阻,并对器件的热阻值进行了比较,结果表明,通过烧结工艺参数优化,可以将器件热阻降低约20%。  相似文献   

15.
L波段Si微波脉冲功率晶体管射频加速寿命试验   总被引:2,自引:1,他引:2  
Si微波功率器件应用十分广泛,其可靠性直接影响使用设备的性能.以L波段Si微波脉冲功率晶体管为例,提出了一种基于Arrhenius模型的Si微波功率晶体管可靠性寿命评价方案.采用L波段Si微波脉冲功率晶体管在射频脉冲工作条件下(f=1.3 GHz,Pin=40 W,TW=150 μs,D=10%)进行了壳温为200℃的高温加速老化试验,应用Arrhenius模型对试验结果进行了分析和计算.推导得出了L波段Si微波脉冲功率晶体管在室温(25 ℃)工作条件下的平均寿命为6.2×106 h.  相似文献   

16.
双层金属电极对硅功率晶体管结温的改善   总被引:1,自引:0,他引:1  
通过红外热相分析发现,在直流工作条件下,双层金属电极硅功率晶体管芯片比单层金属电极的结温低10℃以上;在微波工作条件下,双层金属电极芯片的结温比单层金属电极的低43.7℃。试验结果表明,双层金属电极能够改善硅微波功率晶体管芯片内微波输入功率和结温分布的均匀性。  相似文献   

17.
论文首先仿真设计了一款射频功率放大器,接着构建了该射频功率放大器热特性分析模型,并采用有限元方法分析了该射频功率放大器热特性,然后研究了增加过孔以及不同覆铜层厚度、环境温度、耗散功率四种情况对射频功率放大器的温度、热应力和热形变的影响,最后基于上述分析结论加工制作并测试了该款射频功率放大器.在3.3GHz~3.6GHz范围内其输出功率不低于39.2dBm,增益不低于12dB,功率附加效率为62.6%~69%;在环境温度为21℃下,运用红外温度扫描仪进行测试,该款射频功率放大器最高温度达到90.0℃,测试结果与仿真分析结果相近.论文的研究为未来射频功率放大器的设计及制作提供了重要指导.  相似文献   

18.
DC/DC电源模块高温失效原因   总被引:3,自引:0,他引:3  
为了得到一款军品级模块因为导致高温失效的原因,通过对模块内部元件加热测试,观测模块电学参数的变化,并与模块整体加热电学参数变化的结果做比较。得到影响模块输出电学参数变化的最主要的元件,同时对该元件特性分析,获得元件随温度变化失效的原理。测得其输出电压随环境温度的上升,而缓慢下降的主要原因来自于光耦的温度特性。环境温度达到150℃左右时,模块内变压器磁芯温度将达到居里点附近,使模块输出电压几乎为零。  相似文献   

19.
功率器件管壳的热应力分析   总被引:5,自引:1,他引:4  
当微电子器件封装中的热应力足够大时 ,常常会导致封装开裂甚至失效 .热应力主要是在制造过程中由于环境温度变化和封装材料热失配而产生的 .因此 ,对封装设计进行热应力估算和可靠性研究是必不可少的 .采用 ABAQUS有限元计算软件 ,对某型混合集成电路的铜基金属功率外壳 ,建立了功率器件封装的三维计算模型 ,进行了应力和变形分析计算 .计算结果为提高封装结构的可靠性和优化封装设计提出了理论依据  相似文献   

20.
通过研究SiGe异质结双极型晶体管(HBT)的温度特性,发现SiGe HBT的发射结正向电压随温度的变化率小于同质结Si双极型晶体管(BJT). 在提高器件或电路热稳定性时,SiGe HBT可以使用比Si BJT更小的镇流电阻.同时SiGe HBT共发射级输出特性曲线在高电压大电流下具有负阻特性,而负阻效应的存在可以有效地抑制器件的热不稳定性效应,从而在温度特性方面证明了SiGe HBT更适合于微波功率器件.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号