首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
2.
3.
HIV-1 RT is a necessary enzyme for retroviral replication, which is the main target for antiviral therapy against AIDS. Effective anti-HIV-1 RT drugs are divided into two groups; nucleoside inhibitors (NRTI) and non-nucleoside inhibitors (NNRTI), which inhibit DNA polymerase. In this study, new DNA aptamers were isolated as anti-HIV-1 RT inhibitors. The selected DNA aptamer (WT62) presented with high affinity and inhibition against wild-type (WT) HIV-1 RT and gave a KD value of 75.10±0.29 nM and an IC50 value of 84.81±8.54 nM. Moreover, WT62 decreased the DNA polymerase function of K103 N/Y181 C double mutant (KY) HIV-1 RT by around 80 %. Furthermore, the ITC results showed that this aptamer has small binding enthalpies with both WT and KY HIV-1 RTs through which the complex might form a hydrophobic interaction or noncovalent bonding. The NMR result also suggested that the WT62 aptamer could bind with both WT and KY mutant HIV-1 RTs at the connection domain.  相似文献   

4.
5.
6.
Previous studies aimed at exploring the SAR of C2-functionalized S-DABOs demonstrated that the substituent at this position plays a key role in the inhibition of both wild-type RT and drug-resistant enzymes, particularly the K103N mutant form. The introduction of a cyclopropyl group led us to the discovery of a potent inhibitor with picomolar activity against wild-type RT and nanomolar activity against many key mutant forms such as K103N. Despite its excellent antiviral profile, this compound suffers from a suboptimal ADME profile typical of many S-DABO analogues, but it could, however, represent a promising candidate as an anti-HIV microbicide. In the present work, a new series of S-DABO/N-DABO derivatives were synthesized to obtain additional SAR information on the C2-position and in particular to improve ADME properties while maintaining a good activity profile against HIV-1 RT. In vitro ADME properties (PAMPA permeation, water solubility, and metabolic stability) were also experimentally evaluated for the most interesting compounds to obtain a reliable indication of their plasma levels after oral administration.  相似文献   

7.
陈清  王坚毅 《化工进展》2018,37(2):702-707
药物普纳替尼(Ponatinib)对野生型和T315I突变型BCR-ABL1激酶均有较强抑制作用,然而其抑制机理仍然未知。为了更好地了解Ponatinib与BCR-ABL1激酶的作用机理,本文首先运用分子动力学模拟方法研究Ponatinib对BCR-ABL1激酶构象变化的影响,然后采用MM-PBSA方法计算复合物的结合自由能。结果表明:Ponatinib诱导野生型BCR-ABL1激酶P-loop和铰链区相互靠近,导致野生型激酶结合口袋关闭,有利于激酶与药物结合;而Ponatinib诱导T315I突变型BCR-ABL1激酶P-loop和铰链区相互远离,导致T315I突变型激酶结合口袋打开,对激酶与药物结合不利;Ponatinib与野生型以及T315I突变型BCR-ABL1激酶的结合自由能分别为-58.57 kcal/mol和-43.54kcal/mol,Ponatinib对野生型BCR-ABL1激酶的抑制能力明显强于T315I突变体,与文献报道的实验抑制活性结果一致。研究结果对认识靶点蛋白和抑制剂分子机制以及设计新药有重要意义。  相似文献   

8.
9.
10.
11.
Free energy simulations have been employed to rationalize thebinding differences between A-74704, a pseudo C2- symmetricinhibitor of HIV-1 protease and its diester analog. The diesteranalog inhibitor, which misses two hydrogen bonds with the enzymeactive site, is surprisingly only 10-fold weaker. The calculatedfree energy difference of 1.7 ± 0.6 kcal/mol is in agreementwith the experimental result. Further, the simulations showthat such a small difference in binding free energies is dueto (1) weaker hydrogen bond interactions between the two (P1and P1) NH groups of A-74704 with Gly27/Gly27' carbonyls ofthe enzyme and (2) the higher desolvation free energy of A-74704compared with its ester analog. The results of these calculationsand their implications for design of HIV-1 protease inhibitorsare discussed.  相似文献   

12.
13.
We describe a strategy that allowed us to confer on a bacterial (E. coli) alkaline phosphatase (AP) the high catalytic activity of the mammalian enzyme while maintaining its high thermostability. First, we identified mutations, at positions other than those occupied by essential catalytic residues, which inactivate the bacterial enzyme without destroying its overall conformation. We transferred concomitantly into the bacterial enzyme four residues of the mammalian enzyme, two being in the catalytic pocket and two being outside. Second, the gene encoding the inactive mutant was submitted to random mutagenesis. Enzyme activity was restored upon the single mutation D330N, at a position that is 12 A away from the center of the catalytic pocket. Third, this mutation was combined with other mutations previously reported to increase AP activity slightly in the presence of magnesium. As a result, at pH 10.0 the phosphatase activity of both mutants D330N/D153H and D330N/D153G was 17-fold higher than that of the wild-type AP. Strikingly, although the two individual mutations D153H and D153G destabilize the enzyme, the double mutant D330N/D153G remained highly stable (T(m)=87 degrees C). Moreover, when combining the phosphatase and transferase activities, the catalytic activity of the mutant D330N/D153G increased 40-fold (k(cat)=3200 s-1) relative to that of the wild-type enzyme (k(cat)=80 s-1). Due to the simultaneous increase in K(m), the resulting k(cat)/K(m) value was only increased by a factor of two. Therefore, a single mutation occurring outside a catalytic pocket can dramatically control not only the activity of an enzyme, but also its thermostability. Preliminary crystallographic data of a covalent D330N/D153G enzyme-phosphate complex show that the phosphate group has significantly moved away from the catalytic pocket, relative to its position in the structure of another mutant previously reported.  相似文献   

14.
The interactions between the Fab and single-chain Fv (scFv) fragments of an antibody (NC10) and its antigen, influenza virus neuraminidase, were analysed in the crystal structures of the Fab-neuraminidase and scFv-neuraminidase complexes. To investigate the contribution to binding made by cavities, salt links and hydrogen bonds in the antibody- antigen interface, 14 single amino acid replacements were made at six contact residues in the scFv fragment by site-directed mutagenesis. The binding affinity of each mutant scFv antibody for neuraminidase was determined with a BIAcore optical biosensor. Four of the mutations resulted in large changes in the free energy of binding to neuraminidase (deltadeltaG > 1 kcal/mol) and together may account for approximately 70% of the free energy of binding. Hence these data support the theory that a small number of residues form the 'functional epitope' and are most important for binding of NC10 to neuraminidase. The salt link between antibody residue (Asp)H56 and (Lys)N432 from neuraminidase was demonstrated to be important for affinity, since substitution of (Asp)H56 with Asn caused a large reduction in the free energy of binding (deltadeltaG = +2.8 kcal/mol). Hydrogen bonds provided by (Tyr)L32 and (Asp)H56 were also important for binding: mutation of (Tyr)L32 to Phe resulted in a significant reduction in binding affinity (deltadeltaG = +1.7 kcal/mol). Disruption of hydrophobic interactions (van der Waals contacts) led to significant reductions in affinity also ((Tyr)H99 to Ala, deltadeltaG = +1.5 kcal/mol; (Leu)L94 to Ala, deltadeltaG > +3.0 kcal/mol). An attempt to increase binding affinity by filling a cavity in the interface with a larger antibody side chain was unsuccessful, as the free energy gained by new antibody-antigen interactions did not compensate for the removal of cavity-bound water molecules.   相似文献   

15.
16.
Bacillus 1,3-1,4-ß-glucanases possess a highly conserveddisulfide bridge connecting a ß-strand with a solventexposedloop lying on top of the extended binding site cleft The contributionof the disulfide bond and of both individual cysteines (Cys61and Cys90) in the Bacillus licheniformis enzyme to stabilityand activity has been evaluated by protein engineering methods.Reduction of the disulfide bond has no effect on kinetic parameters,has only a minor effect on the activity-temperature profileat high temperatures, and destabilizes the protein by less than0.7 kcal/mol as measured by equilibrium urea denatu ration at37°C. Replacing either of the Cys residues with Ala destabilizesthe protein and lowers the specific activity. C90A retains 70%of wild-type (wt) activity (in terms of Vmax), whereas C61Aand the double mutant C61A–C90A have 10% of wt Vmax. Alarger change in free energy of unfolding is seen by equilibriumurea denaturation for the C61A mutation (loop residue, 3.2 kcal/molrelative to reduced wt) as compared with the C90A mutation (ß-strandresidue, 1.8 kcal/mol relative to reduced wt), while the doublemutant C61A–C90A is 0.8 kcal/mol less stable than thesingle C61A mutant. The effects on stability are interpretedas a result of the change in hydrophobic packing that occursupon removal of the sulfur atoms in the Cys to Ala mutations  相似文献   

17.
The catalytic contribution of His48 in the active site of porcinepancreatic phospholipase A2 was examined using site-directedmutagenesis. Replacement of His48 by lysine (H48K) gives riseto a protein having a distorted lipid binding pocket. Activityof this variant drops below the detection limit which is 107-foldlower than that of the wild-type enzyme. On the other hand,the presence of glutamine (H48Q) or asparagine (H48N) at thisposition does not affect the structural integrity of the enzymeas can be derived from the preserved lipid binding propertiesof these variants. However, the substitutions H48Q and H48Nstrongly reduce the turnover number, i.e. by a factor of 105.Residual activity is totally lost after addition of a competitiveinhibitor. We conclude that proper lipid binding on its ownaccelerates ester bond hydrolysis by a factor of 102. With theselected variants, we were also able to dissect the contributionof the hydrogen bond between Asp99 and His48 on conformationalstability, being 5.2 kJ/mol. Another hydrogen bond with His48is formed when the competitive inhibitor (R)-2-dodecanoylamino-hexanol-1-phosphoglycolinteracts with the enzyme. Its contribution to binding of theinhibitor in the presence of an interface was found to be 5.7kJ/mol.  相似文献   

18.
When folding to the native state N in the presence of salt, the apparent two-state folder S6 transiently forms a transient off-pathway state C with substantial secondary and tertiary structure. Fifteen double mutant cycles were analysed to compare side-chain interaction energies DeltaDeltaG(int) in C, N and TS (the transition state between N and the denatured state). The kinetic signatures of these destabilizing mutants suggest folding scenarios involving unfolding intermediates and even alternative unfolding pathways. However, restricting the kinetic data to linear parts of the chevron plot allows reliable extrapolation to zero molar denaturant of rate constants of folding, unfolding and misfolding. Side-chain interactions appear to contribute to the stability of C, but in a substantially non-native environment, as shown by changes in the sign of DeltaDeltaG(int) between C and N. Remarkably, there appear to be significant (0.7-2 kcal/mol) antagonistic interactions between the two residues Leu30 and Leu75 in N and TS, which may be linked to subtle structural changes seen in the crystal structures of the mutants. A small number of overlapping residues are involved in these kinds of antagonistic interactions in N, TS and C, suggesting that repulsive interactions are coded into the protein topology whether the protein folds or misfolds. Destabilizing double mutants indicate that apparent two-state folders can be induced to behave in more complex ways provided that the native state is suitably destabilized.  相似文献   

19.
Site-directed mutagenesis was carried out on Bacillus pumiluschloramphenicol acetyltransferase (CAT-86) to determine theeffects of substitution at a conserved hydrophobic pocket identifiedearlier as important for thermostability. Mutations were introducedthat would substitute residues at consensus positions 33, 191and 203 in the enzyme, both individually and in combination.Two mutants, SDM1 (CAT-86 Y33F, A203V) and SDM5 (CAT-86 A203I),were more thermostable than wild-type and two mutants, SDM4(CAT-86 I191V) and SDM7 (CAT-86 A203G), were less stable. Reconstructionof the residues of this hydrophobic pocket to that of a morethermostable CAT-R387 enzyme pocket (as a Y33F, I191V, A203Vtriple mutant) increased the thermostability of the enzyme abovethe wild-type, but its stability was less than that of SDM1and SDM5. The Km values of the mutant enzymes for chloramphenicoland acetyl-CoA were essentially unaltered (in the ranges 15–30and 26–35 µM respectively) and the specific activityof purified enzyme was in the range 270–710 units/mg protein.The possible effects of the amino acid substitutions on theCAT-86 structure were determined by homology modelling. A reductionin conformational strain and optimized hydrophobic interactionsare predicted to be responsible for the increased thermostabilityof the SDM1 and SDM5 mutants.  相似文献   

20.
Rational site-directed mutagenesis and biophysical analyses have been used to explore the thermodynamic stability and catalytic capabilities of organophosphorus hydrolase (OPH) and its genetically modified variants. There are clear trade-offs in the stability of modifications that enhance catalytic activities. For example, the H254R/H257L variant has higher turnover numbers for the chemical warfare agents VX (144 versus 14 s(-1) for the native enzyme (wild type) and VR (Russian VX, 465 versus 12 s(-1) for wild type). These increases are accompanied by a loss in stability in which the total Gibb's free energy for unfolding is 19.6 kcal/mol, which is 5.7 kcal/mol less than that of the wild-type enzyme. X-ray crystallographic studies support biophysical data that suggest amino acid residues near the active site contribute to the chemical and thermal stability through hydrophobic and cation-pi interactions. The cation-pi interactions appear to contribute an additional 7 kcal/mol to the overall global stability of the enzyme. Using rational design, it has been possible to make amino acid changes in this region that restored the stability, yet maintained effective V-agent activities, with turnover numbers of 68 and 36 s(-1) for VX and VR, respectively. This study describes the first rationally designed, stability/activity balance for an OPH enzyme with a legitimate V-agent activity, and its crystal structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号