首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
采用涂敷方式,在烧结钕铁硼表面均匀涂敷TbH2粉末,经过不同的扩散温度处理,制备出晶界扩散磁体。研究了晶界扩散TbH2对烧结Nd-Fe-B磁体常温磁性能及高温稳定性的影响,并分析了磁体矫顽力提升的机理。常温磁性能研究表明,扩散磁体经过890 ℃+490 ℃工艺处理后性能达到最优,矫顽力从1 383 kA/m提升到1 988 kA/m。高温磁性能结果显示,扩散磁体200 ℃的矫顽力温度系数|β|比原始磁体降低0.032%/℃,磁通不可损失hirr比原始磁体降低21.47%,扩散TbH2明显提高了烧结Nd-Fe-B磁体的热稳定性。分析得出,晶界扩散TbH2磁体矫顽力提升的机理是Nd2Fe14B晶粒外延层形成了(Tb, Nd)2Fe14B核壳结构,提高了磁晶各向异性场;同时改善了磁体的微观组织结构,有效地隔绝了晶粒之间的磁交换耦合作用。   相似文献   

2.
通过在烧结钕铁硼磁体中添加不同比例的高丰度Y元素,对比研究Y元素的添加对Nd2Fe14B磁体的磁性能、抗弯强度、耐腐蚀性、热稳定性和微观形貌的影响。结果表明,随着Y含量的增加,虽然Nd2Fe14B磁体磁性能逐渐降低,但由于Y元素的添加,改善了磁体的居里温度,晶界相的分布、晶粒尺寸更均匀,抗弯强度、耐腐蚀性、热稳定性等指标均得到明显改善。在烧结钕铁硼磁体中适当地添加Y元素,可在保证磁体优异的综合性能的前提下,降低磁体的生产成本,实现稀土资源的综合利用。  相似文献   

3.
研究了具有较低温度系数的稀土永磁体,包括低矫顽力温度系数的Nd2Fe14B/Fe3B-ferrite复合粘结磁体和低剩磁温度系数的Sm0.8RE0.2(CobalFe0.22Cu0.06Zr0.03)7.4(RE为Gd,Er)烧结磁体.实验表明,添加矫顽力温度系数βjHc为正数的铁氧体磁粉可将粘结磁体的矫顽力温度系数值减小.还讨论了固溶处理对2∶17型Sm-Co烧结磁体磁性能的影响以及添加重稀土元素部分替代钐,对提高温度稳定性的作用.  相似文献   

4.
《稀土》2018,(6)
利用白云鄂博共伴生混合稀土(MM)制备了MM-Fe-B永磁体,研究了烧结温度对磁性能与微观结构的影响。随着烧结温度的升高,磁体的密度逐渐升高,剩磁、矫顽力、最大磁能积先增大后减小。对比结果:当烧结温度为980℃时,磁性能最优,剩磁0. 862 T(8. 62 k Gs),内禀矫顽力171. 6 k A/m(2. 16 k Oe),最大磁能积84. 6 k J/m3(10. 63 MGOe)。与Nd Fe B最优烧结温度(1060℃)相比MM-Fe-B烧结温度有所降低,有利于节能减排。对磁体微结构分析发现磁体中存在Ce Fe2相,La元素富集于富稀土相中,磁体中存在大量的穿晶畴。探索利用共伴生混合稀土制备永磁体对稀土资源合理高效使用和环境保护具有重大意义。  相似文献   

5.
针对稀土永磁电机用钕铁硼磁体热稳定性差,测试了45SH钕铁硼磁体在不同温度下的磁性能参数变化、磁通量损失、电阻率的变化;可以看出:磁体样品温度升高,矫顽力温度系数逐渐降低,剩磁温度系数在升高,拐点上升,磁通损失明显,材料的电阻和电阻率反而趋势增大,电导率趋势减小.结果表明:钕铁硼永磁电机中的永磁体磁性变低,电机的参数性能指标就发生改变,永磁体的温度稳定性对电机应用至关重要.  相似文献   

6.
采用废旧的烧结钕铁硼电机磁钢作为研究对象(牌号33H),研究富铈液相合金添加量对再生烧结钕铁硼磁体的磁性能和微结构的影响。研究结果表明,在相同的烧结温度下,当未添加液相时,再生磁体密度很低;进一步提高烧结温度,磁体密度略有提高,但是磁体容易氧化、甚至开裂。随着液相合金的添加,再生磁体的密度不断提高,磁性能相应地明显改善,这说明液相合金具有明显的助烧结作用。但是当液相合金的添加量超过8%(质量分数)时,再生磁体的矫顽力降低,这可能因为过多的富铈液相添加使磁体中的富稀土相团聚,磁体微观结构变差。当液相合金添加量为5%,烧结温度为1080℃时,再生烧结钕铁硼磁体的磁性能最佳:剩磁Br达到11.67 k Gs,内秉矫顽力Hcj达到18.94 k Oe,磁能积(BH)max为33.1 MGOe。再生磁体的性能与原废旧磁钢相当,甚至略有提高,再生磁体具有优异的退磁曲线方形度(Hk/Hcj=0.972)。  相似文献   

7.
《稀土》2020,(5)
将商用N45磁粉与CuGa辅合金粉末混合制备得到烧结钕铁硼磁体。CuGa辅合金的添加优化了磁体的晶界,使得磁隔绝效应更加显著,从而提高了磁体的磁性能及热稳定性。仅需添加0.1%质量分数的Ga,烧结磁体矫顽力就由12.5 kOe增长到13.4 kOe,继续增加添加量虽然有利于提高矫顽力,但是降低了磁体的剩磁。EDS结果显示,在晶粒边界处有Cu和Ga的富集现象,可以很好的起到去磁耦合的作用,由于边界在磁体中占比极小,故较多的添加量会使辅合金元素进入主相,降低磁性能。随着辅合金添加量的增加,磁体的矫顽力温度系数单调的由-0.677%/℃变化为-0.661%/℃。CuGa辅合金添加磁体的矫顽力温度系数的绝对值小于未添加磁体,说明随着CuGa辅合金添加量的增加,磁体的矫顽力热稳定性有所提高。100℃处理后,未添加CuGa辅合金磁体(Pc=2)磁通不可逆损失hirr=14.14%,而添加了质量分数为0.1%、0.3%和0.5%的Ga的样品hirr分别为8.07%,5.75%,5.35%。CuGa合金添加可以减小磁通的不可逆损失,使磁体的热稳定性得到改善,有利于磁体在电机等高温环境中的应用。  相似文献   

8.
通过电弧炉冶炼合金,采用球磨制粉,在磁场下取向成型,真空烧结和热处理制备了Nd17-xRxFe76.5B6.5磁体,研究了在钕铁硼永磁体中用稀土Gd部分地代替钕时对永磁体的磁性能随Gd含量的变化。实验结果表明:在一定的烧结及热处理工艺条件下,Nd17-xRxFe76.5B6.5磁体在Gd含量小于5%(原子分数)时,Gd对磁体的剩磁和内禀矫顽力影响相对较小,当Gd含量5%时,磁体磁性能急剧下降。显微成分分析表明,在合金铸态下,Gd可抑制合金的α-Fe相的析出;在磁体中,Gd进入主相是降低磁体矫顽力的主要原因。  相似文献   

9.
高矫顽力烧结钕铁硼磁体具备较强的抗退磁能力和良好的温度稳定性,是保障永磁电机长期安全运转的关键基础。传统制造技术需要在材料中加入大量重稀土元素以提升材料的矫顽力,然而,重稀土元素极为稀缺因而价格高昂,并且重稀土元素直接添加不可避免的会造成材料剩磁的明显下降。本文研究了烧结钕铁硼晶界扩散处理后磁体的微观组织结构变化规律和矫顽力增强机制,通过晶界富稀土相组成及分布的优化,材料矫顽力得到大幅提升,适合制造兼具高剩磁、高矫顽力的高性能钕铁硼永磁材料。  相似文献   

10.
研究了晶界扩散Dy60Co35Ga5合金对烧结钕铁硼磁体磁性能及其热稳定性的影响.随着扩散温度的升高,磁体的矫顽力(Hcj)呈现出先增加后减少的趋势,并在890 ℃扩散3 h,480 ℃回火5 h的工艺条件下,矫顽力达到较优,从1 209 kA/m提高到1 624 kA/m,磁体的剩磁只有轻微的下降,从1.38 T降低到1.32 T.高温下测试磁体的磁性能,原始磁体和890 ℃晶界扩散Dy60Co35Ga5合金磁体的矫顽力都呈下降趋势,但晶界扩散Dy60Co35Ga5合金磁体的矫顽力在高温下要明显优于原始磁体.原始磁体及890 ℃晶界扩散Dy60Co35Ga5合金磁体在不同温度下保温2 h的不可逆磁通损失分别为63 %和45 %.且DSC结果显示,890 ℃晶界扩散Dy60Co35Ga5合金磁体的居里温度(Tc)要明显高于原始磁体的居里温度,这表明晶界扩散磁体的热稳定性得到了很大的改善. XRD图谱显示,890 ℃晶界扩散磁体RE2Fe14B相的衍射峰较原始磁体向右偏移,说明Dy原子及Co原子少部分已进入主相晶粒.   相似文献   

11.
为深入了解高矫顽力Sm2(Co,Fe,Cu,Zr)17永磁体烧结温度与磁体磁性能的关系,设计了6种不同烧结温度,分别测试了各温度下烧结试样的密度和磁性能。试验结果表明:高矫顽力Sm2(Co,Fe,Cu,Zr)17磁体的密度随着烧结温度的升高而升高,在1210-1220℃达到最大值;磁体在1205-1210℃烧结时有较高的磁性能,内禀矫顽力超过1910kA/m,最大磁能积达到210kJ/m^3,温度过高或过低都使磁本性能下降;剩磁Br随磁体密度的升高而上升,矫顽力Hci的变化是密度和晶粒大小及胞状尺寸综合作用的结果。  相似文献   

12.
用粉末冶金法制备了Sm(Co0.7Fe0.1Cu0.16Zr0.04)6.7烧结磁体,设计了8种不同烧结工艺;并对磁体的磁性能在烧结过程中的变化以及烧结工艺条件与显微组织的关系进行了系统研究.结果表明适当提高预烧结温度与烧结温度有利于磁性能的改善,但预烧结温度与烧结温度过高或过低都会使磁性能大大降低.矫顽力对烧结工艺非常敏感;样品在1 185℃预烧结后再在1 200℃烧结有最好的综合磁性能,其内禀矫顽力高达1 931 kA/m.还用扫描电子显微镜、电子探针光谱仪对显微组织及元素分布进行了分析,结果表明磁性能的改变可以认为是显微组织变化与元素在各相中分布变化的结果.  相似文献   

13.
随着低碳经济的提出,烧结钕铁硼磁体作为新能源汽车及其他高新技术的核心材料越来越受到人们的关注,同时对其性能也提出了更高的要求,高矫顽力、高剩磁和大磁能积的永磁体成为人们追求的目标。烧结钕铁硼磁体的磁性能与微观结构中晶界成分、分布以及体积分数等密切相关。利用新型工艺在合金中掺杂重稀土可以很好地调控磁体的微观结构,从而在保持剩磁不变的基础上,提高磁体的矫顽力和磁能积。本文在详细介绍两种新型掺杂技术的基础上,梳理了近几十年来国内外通过掺杂重稀土金属、重稀土化合物及重稀土合金来调控磁体晶界结构、提高磁体矫顽力方面的最新研究成果,为进一步提高烧结钕铁硼磁体性能提供参考。  相似文献   

14.
对Ga、Al、Cu和Zr共同掺杂的烧结Nd-Fe-B磁体磁性能和显微结构进行研究,并通过回火工艺对磁体的矫顽力进行调控。结果表明:当一级回火为900℃×150 min,且二级回火为500℃×180 min时,磁体矫顽力Hcj从烧结态的14.33 kOe大幅提高到二级回火态的19.86 kOe,提高了38.6%;方形度Hk/Hcj由0.86增加到0.97;剩磁Br仅从烧结态13.51 kGs略微下降到二级回火态的13.46 kGs;富稀土相分布更加连续和明显。研究分析表明,矫顽力大幅增加主要是由于含有少量的富Nd相和贫B相的烧结Nd-Fe-B磁体中Ga的掺杂改变了晶界相湿润性,降低了富稀土相中Fe元素的含量。本研究为无重稀土高矫顽力和高剩磁烧结Nd-Fe-B磁体步入产业化夯实了理论基础。  相似文献   

15.
为开发低成本烧结钕铁硼磁体,用30% Ce替代(Nd0.75Pr0.25)32.69Fe66.25B1.06磁体中的Nd和Pr,研究了磁体在烧结及回火过程中的组织结构和磁学性能变化.结果表明,取向压坯在1030~1080℃烧结2 h后,随烧结温度升高,磁学性能下降,烧结温度为1030℃时综合磁学性能均最好.烧结态Ce替代磁体的综合磁学性能优于未替代磁体.一级回火后,相组成和晶粒尺寸基本不变,边界结构也未发生明显变化,磁体性能基本不变,或有少量下降.二级回火后,晶界明显改善,获得较清晰且平直的晶界,磁体矫顽力均得到大幅提高.Ce替代磁体的剩磁、矫顽力和磁能积均稍低于未替代磁体.   相似文献   

16.
北京钢铁研究总院近日向社会推出“高稳定性稀土永磁材料与工艺”研究开发成果。据介绍 ,该项目运用磁学、金属学、断裂力学的基本原理和急冷快淬技术、真空粉末冶金烧结工艺 ,创立了主相和晶界相以不同成分分别制备后再复合烧结的新工艺路线 ,研制出铁钴复合基稀土永磁材料。突破了钕铁硼 铁基稀土永磁材料温度稳定性差、机械加工困难的缺陷。并依据首次提出的解释铁基、铁钴基稀土永磁材料矫顽力机制的“发动场理论” ,揭示了材料的矫顽力机制及合金成分与材料性能的影响规律 ,解决了钕铁硼 铁基稀土永磁材料为提高热稳定性添加钴所导致的…  相似文献   

17.
通过晶界扩散技术提升烧结钕铁硼(NdFeB)磁体矫顽力的方法已获得广泛应用,为了研究重稀土磁粉对磁体综合磁性能的影响,本文采用喷涂扩散的方法将重稀土Tb含量为6.0%(质量分数)的磁粉作为复合扩散源的一部分进行晶界扩散并制备了高性能烧结NdFeB磁体。结果表明,当主扩散源占比为60%(质量分数)时,Nd40Tb60对应扩散磁体的矫顽力最高达到21.52 kOe,矫顽力增幅明显。经过微观组织结构和XRD表征分析,重稀土元素Tb沿晶界相扩散进入磁体内部的同时发生了晶格取代反应,可在晶粒表层生成磁晶各向异性场更强的(Nd,Dy/Tb)2Fe14B硬磁相,显著增强了磁体矫顽力。当主扩散源占比为20%、40%和80%(质量分数)时,Nd80Tb20,Nd60Tb40和Nd20Tb80对应扩散磁体的矫顽力增幅较小,其中Nd80Tb20扩散...  相似文献   

18.
元素Ga对烧结Nd-Fe-B永磁体显微结构与磁性能的影响   总被引:1,自引:0,他引:1  
本文研究了添加元素Ga[0 %~ 2 % (质量分数 ) ]对烧结Nd15Fe78B7永磁体显微结构与磁性能的影响。结果表明 :添加少量的Ga就可有效的提高内禀矫顽力Hci 而不引起剩磁Br 和最大磁能积 (BH) max 的降低 ;Ga的添加量为 1 0 % (质量分数 )时 ,得到与Nd Fe B系永磁体理想显微结构相近的显微组织结构 ;添加元素Ga在磁体中以Nd2 Fe14 xGaxB和GaNd第二相的形式存在 ;当Ga元素添加量较大时 [>1 5 % (质量分数 ) ]时 ,添加的Ga使主相Nd2 Fe14 B不稳定  相似文献   

19.
采用SC工艺制备了Nd-Fe-B合金铸片,研究了在合金铸片中添加Dy、Nb元素对合金铸片显微结构和烧结Nd-Fe-B磁体磁性能的影响,确定了Nd-Fe-B磁体获得最佳磁性能时Dy元素、Nb元素的含量,并用扫描电镜、磁性能测量仪等对其进行了分析和测量。实验结果表明,Dy元素的添加可以使晶粒细小化、均匀化、规则化,在不显著影响剩磁的情况下大幅度提高磁体的内禀矫顽力;在含Dy元素和Co元素的磁体中加入少量Nb元素可以在不显著影响剩磁的情况下较大幅度提高磁体的内禀矫顽力,降低磁通不可逆损失,提高磁体使用温度。  相似文献   

20.
热压/热变形钕铁硼磁体具有良好的纳米晶微结构、剩磁、磁能积以及高的抗腐蚀性和热稳定性等优点,受到人们的广泛关注。近年来Dy、Tb等重稀土的价格飙升,尤其是晶界扩散方法应用于热变形磁体使其矫顽力大幅度提高,热变形钕铁硼磁体的研究重新成为当前磁性材料研究的热点。本文从热压/热变形钕铁硼磁体的制备工艺、微观结构、元素掺杂等方面进行总结。介绍了几种提高热变形钕铁硼磁性能的工艺方法,对热变形钕铁硼的Nd元素含量、热变形温度、变形量、富Nd相的形状与分布、晶粒形状与修饰等进行探讨。并对多种低熔点共晶合金晶界扩散和压力扩散进行对比,采用添加轻稀土或者是添加高熔点合金的方式使得热变形钕铁硼仍然保持较优异的磁性能。此外,利用微磁模拟和透射电镜原位加场研究对热变形钕铁硼的磁化机理、晶粒耦合机制与矫顽力机制进行总结。这些机制包括主相晶粒间的交换耦合作用、晶间相的去磁耦合作用、钉扎理论、自钉扎理论、成核理论、成分关系理论、晶粒内部缺陷钉扎作用等相关理论。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号