首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
为了进行平地区域原基础测绘产品高程的更新,我省进行了针对平地区域的机载LiDAR测高项目,为了获取高精度的DSM和DEM成果,在实际生产中开展了机载LiDAR数据处理及DEM成果的制作方法研究。本文将利用TerraSolid软件,从LiDAR点云数据的高程精度控制、点云滤波分类要求和如何利用特征线进行无点云数据区域的DEM精度控制等关键技术方面进行研究。  相似文献   

2.
机载双天线InSAR(interferometric synthetic aperture Radar)是获取高精度数字高程模型(digital elevation model,DEM)的新技术。为了获取大面积高精度的DEM,在已有的应用机载InSAR数据生成DEM流程的基础上,引入精确干涉参数定标和区域网平差处理技术,提出了利用国产机载双天线InSAR数据生成丘陵地区大面积、高精度DEM的技术流程,主要包括干涉定标、干涉处理、区域网平差、相高转换、地理编码和影像镶嵌;基于VC++开发了InSAR地形制图处理系统。以四川江油试验区4个条带、76景高分辨率机载InSAR数据为基础进行试验研究,生成了覆盖超过500 km2的高精度DEM。利用野外布设的角反射器检查点进行精度检验的结果是点位中误差为±1.188 m,高程中误差为±0.508 m。该结果表明:应用上述技术流程生成的DEM能满足丘陵地区1∶1万比例尺一级高程中误差的精度要求;机载InSAR可作为复杂地区大面积地形测图制取的一种技术手段。  相似文献   

3.
数字高程模型(DEM)利用有限的地形高程数据实现对地表形态的数字化模拟,是测绘部门数据生产的重要内容.当前DEM生产主要采用交互式数字摄影测量方式,不仅需要投入大量人力,极为依赖经验,同时生产效率也较为低下.近年来兴起的机载激光雷达(LiDAR)技术为DEM获取提供了一种新的途径.本文以广西植被茂密区和陡石山区的点云数据为例,研究在广西困难地区应用机载LiDAR技术进行高精度DEM生产的可行性,并利用同区域的数字广西地貌成果对所生产的DEM进行精度验证.结果表明,应用机载LiDAR数据进行DEM生产不仅将植被茂密区的生产效率提升了25%,陡石山区的生产效率提升了7倍以上,同时数据精度能够满足1:10000 DEM的要求,在广西传统DEM生产困难地区具有极大的优势.  相似文献   

4.
论述了由机载LiDAR数据快速生成DEM的基本流程和算法原理,并结合崀山地区实际数据进行了精度分析。实践表明,机载LiDAR技术能快速有效地获取高精度的DEM,值得推广。  相似文献   

5.
在基于激光点云构建DEM的过程中,用于区分地面点和非地面点的点云滤波处理至关重要。本文面向基于机载LiDAR点云的沿海滩涂DEM高精度的构建需求,提出了一种机载LiDAR点云的改进坡度滤波算法。首先,采用统计异常值剔除法(SOR)去除原始机载LiDAR点云数据中的噪声;然后,利用规则格网的坡度和高程阈值,设计了适用于滩涂点云数据的地面点坡度滤波方法;最后,选取如东市长沙港的滩涂机载LiDAR点云作为试验数据,构建滩涂DEM,并进行精度检验。试验结果表明,利用本文方法处理后的LiDAR点云构建的DEM精度满足国家与行业标准的要求。  相似文献   

6.
机载LiDAR可快速获取高密度的地表三维几何信息,具有全天候、主动观测、对地物间缝隙有一定穿透性等优点,在滩涂测绘中具有很大优势.本文对宁波市激光雷达滩涂测绘工作进行了经验总结,首先介绍机载LiDAR技术在滩涂测绘中的优势,然后在LiDAR数据处理基础上,重点分析高精度滩涂DEM制作的关键技术,最后对DEM产品进行精度评定。  相似文献   

7.
地形分析是评估景观、土壤变迁和生态功能不可或缺的一部分,因此研究提取城区数字高程模型(DEM)的方法非常有意义.本文采用机载激光雷达(LiDAR)三维点云数据提取DEM,首先对研究区原始点云用不规则三角网算法进行滤波,获得所有的地表面点云并进行抽稀,然后应用自然领域插值法进行内插生成DEM,最后再与该区参考DEM进行对比分析.结果显示,本文提出的方法能够高精度获取城区数字高程模型.  相似文献   

8.
目前,基于机载激光雷达(light detection and ranging,LiDAR)点云数据生成高精度、高现势性数字高程模型(digital elevation model,DEM)的技术已广泛应用,对生成的DEM数据进行科学、高效的质量控制迫在眉睫。本研究结合实际生产经验,详细介绍包括人工解译判别检查、半自动检查(交互式检查)和基于Python脚本自动检查的三步骤检查法。该方法全面地涵盖了机载LiDAR技术生成DEM的质量检验方法及对应问题的解决方案,有效提高了质量检查的效率和准确性。  相似文献   

9.
基于遥感的区域尺度森林地上生物量估算研究   总被引:1,自引:0,他引:1  
森林是陆地生态系统最大的碳库,精确估算森林生物量是陆地碳循环研究的关键。首先从机载LiDAR数据中提取高度和密度统计量,采用逐步回归模型进行典型样区生物量估算;然后利用机载LiDAR数据估算的生物量作为样本数据,与多光谱遥感数据Landsat8 OLI的波段反射率及植被指数建立回归模型,实现区域尺度森林地上生物量估算。实验结果显示,机载LiDAR数据估算的鼎湖山样区生物量与地面实测生物量的相关性R2达0.81,生物量RMSE为40.85 t/ha,说明机载LiDAR点云数据的高度和密度统计量与生物量存在较高的相关性。以机载LiDAR数据估算的生物量为样本数据,结合多光谱遥感数据Landsat8 OLI估算粤西北地区的森林地上生物量,精度验证结果为:R2为0.58,RMSE为36.9 t/ha;针叶林、阔叶林和针阔叶混交林等3种不同森林类型生物量的估算结果为:R2分别为0.51(n=251)、0.58(n=235)和0.56(n=241),生物量RMSE分别为24.1 t/ha、31.3 t/ha和29.9 t/ha,估算精度相差不大。总体上看,利用遥感数据可以开展区域尺度的森林地上生物量估算,为森林固碳监测提供有力的参考数据。  相似文献   

10.
目前LiDAR技术已经成为DTM的主要生产方法。地面误差对LiDAR生成DTM的精度影响比较明显,特别是由于亚热带森林植被覆盖区LiDAR激光点云少,生成的DTM更复杂,需要分析地面误差对LiDAR生成林下DTM的精度影响。本文以华南农业大学增城教学科研基地为研究对象,从森林郁闭度和坡度两个方面探讨了地面误差对机载LiDAR数据生成林下DTM精度的影响。研究结果发现高程误差会随郁闭度的增大而增大;而随坡度变化趋势不明显,但是坡度为15°时成为误差的分水岭,其前后误差差异比较明显。总体而言,郁闭度的影响更为明显。  相似文献   

11.
介绍机载LiDAR系统获取地表三维信息的基本原理以及DSS数字相机与LiDAR系统的硬件组成和数据处理流程,讨论LiDAR设备的检校方法,利用GPS/INS提供的像片外方位元素信息和LiDAR提供的高精度DEM,避免空中三角测量数据处理,快速生成正射影像.摄区试验证明,快速生成正射影像周期短,节约成本,满足了应急测绘需求.  相似文献   

12.
潮间带地形测量对保护与利用滩涂具有基础作用,本文提出联合船载单波束回声测量与机载激光LiDAR综合系统。首先采用ODOM MKⅢ双频单波束测深仪同步采集并验证无人机机载LiDAR潮间带范围点云成果符合精度;然后针对潮间带复杂环境设计了无人机机载LiDAR低潮航摄关键指标;最后优化了高精度大比例尺地形图测制方法,该方法结合了低潮时机载LiDAR滩涂陆地地形和高潮时船载单波束测深滩涂水下地形方式的潮间带。实践表明:(1)选取的816个重合区域测点高程比对测量符合精度,99%的比对点高程差值在0.2 m内,说明机载激光LiDAR测量可满足沿海滩涂测量要求;(2)无人机进出测区应依次轮换,且采用平飞结合八字飞行以避免IMU误差累积,控制航线弯曲度不大于3%,保障点云数据精度及有效覆盖;(3)该测量系统在潮间带高精度大范围地形测量工程具有参考意义。  相似文献   

13.
离散点云构建数字高程模型的插值方法研究   总被引:1,自引:0,他引:1  
针对消除DEM构建中插值方法选择的随意性问题,该文基于机载LiDAR离散点云数据,以广东省典型城区与山区为实验对象,利用克里金、反距离权重、径向基函数和自然邻域4种插值方法,对插值参数进行优选后构建DEM,使用交叉验证、相关性分析、像元统计量和三维可视化等方法进行精度分析与比较。结果表明:在城区反距离权重插值,不但可以对空值区域进行适当填充和平滑,而且对高程最大、最小值的预测精度也很高;不同插值方法在构建山区DEM时精度相差不大,插值精度可以达到厘米级,其中普通克里金插值效果最佳。对于城区与山区点云数据反距离权重插值法生成的DEM均能很好地反映地表自然形态,为今后LiDAR点云数据构建DEM选择最佳的插值算法以及插值参数提供参考。  相似文献   

14.
王道杰  陈倍  孙健辉 《测绘通报》2022,(5):140-144+169
机载激光雷达技术(LiDAR)作为一项先进的遥感技术,是植被覆盖区DEM获取的重要手段之一,而不同地形坡度条件及点云密度对DEM产品质量有重要影响。本文以辽宁省某市的机载LiDAR数据为基础,选取5种不同地形坡度的点云数据,通过随机、等间距及基于曲率3种不同的点云抽稀方法,按照点云保留率为80%、60%、40%、20%和10%共5个不同梯度的抽稀倍数对原始点云进行抽稀简化处理,生成与之对应的DEM并对其进行精度评价,以此研究地形坡度、点云抽稀方法、抽稀倍数对DEM精度的影响。结果表明,DEM精度与地形坡度呈负相关关系,即RMSE随地形坡度升高不断增加;基于曲率的抽稀方法在地形坡度>30°时,相较于其他两种方法RMSE较小,具有明显优势;40%的点云保留率是平衡DEM精度与数据存储效率的一个节点,当点云保留率<40%时,DEM的高程RMSE会迅速增大。该研究对于利用机载LiDAR进行大范围DEM生产具有一定的指导和借鉴意义。  相似文献   

15.
随着高精度机载LiDAR点云数据的快速大量获取,高精度DEM的生产效率大大提高。在丘陵、山区、高山区利用高精度DEM自动生成等高线的精度及效率已被认可并广泛应用,但在平原地区目前仍未有较好的解决方案。本文提出一种平原地区利用分级渲染的高精度DEM人工绘制等高线的技术方法,实验表明,该方法勾绘的等高线能宏观、美观地反映区域地形地貌特点,精度符合要求,作业效率高,可为等高线生产更新提供一定的借鉴和参考。  相似文献   

16.
为探究ASTER GDEMV3、SRTM1 DEM和AW3D30 DEM 3种开源DEM数据的高程精度,本文以高精度ICESat-2 ATLAS测高数据为参考数据,利用GIS统计分析、误差相关分析及数理统计对DEM的高程精度进行对比评价。结果表明:①AW3D30的质量最稳定;SRTM1 DEM在平原精度最高;在高原山地精度由高到低依次为AW3D30 DEM、ASTER GDEMV3、SRTM1 DEM。②DEM数据高程精度受地表覆盖影响较大,且与地形因素密切相关,在相同地表覆盖的两个研究区中DEM数据高程精度表现情况不一致,SRTM在平原地表覆盖下精度表现最好,平均误差为3.15 m,AW3D30 DEM在山地地表覆盖下精度表现最好,平均误差为7.61 m。③坡度对DEM数据的高程精度影响较大,在两个研究区3种DEM数据的高程误差均随坡度的增加而增加;坡向对DEM数据的高程精度影响较小,未发现明显的规律。  相似文献   

17.
水库、山地、矿区等复杂环境的地形测绘已实现由传统测绘向机载LiDAR、倾斜摄影、遥感技术等新型测量方式转变,能在短时间、大范围内高效地完成目标区域内的测绘任务,机载LiDAR系统能快速获取高精度的3D点云与匹配的影像数据,生成高精度的DOM、DEM、DLG与3D模型.本文通过机载LiDAR系统在水库地形测绘中的应用实例,介绍和总结了生产技术流程,验证了地形图产品精度,提供了在水库中应用的范例,为高效地测量复杂地形提供标准化流程.  相似文献   

18.
《测绘》2019,(4)
本文介绍了机载激光雷达(LiDAR)系统原理和点云数据处理流程,结合高速公路纵横断面测量项目实例,阐述了机载激光雷达生产的航线规划设计、数据获取及数据处理,并对生成的DEM质量进行了验证,结果说明机载激光雷达能满足公路纵横断面测量的精度要求。  相似文献   

19.
机载激光雷达(LiDAR)系统可以快速获取高精度的地面点云数据,可以快速生成数字高程模型(DEM)。但是基于原始水体点云数据直接构建DEM效果较差,针对这个问题,论文提出了一种双线河水体点云填充方法,对缺失的河道内点云数据进行填充,并设计开发了河流优化填充模块,实现了双线河水体具有上下游特征的DEM构建效果。  相似文献   

20.
SRTM(1″)DEM在流域水文分析中的适用性研究   总被引:1,自引:0,他引:1  
高精度的数字高程模型(digital elevation model,DEM)数据是流域水文分析应用的基础。美国地质调查局新发布了全球高分辨率数字高程数据产品,其空间分辨率为1″(约为30 m)。为评价该数据在流域水文分析中的适用性,以鹤壁汤河流域为实验区,以机载LiDAR DEM数据为参考,统计了SRTM(1″)数据的高程误差,分析了坡度、坡向、地表覆盖等对误差的影响;在基于地形的水文分析中,统计分析了SRTM(1″)数据误差对地形湿度指数、坡度坡长因子以及汇流动力指数等地形指数计算的影响;最后选取流域汇水区面积、最长水流路径长度、形状系数、弯曲度系数等流域特征参数对两种DEM数据提取结果进行了对比。研究表明SRTM(1″)DEM数据具有较高的精度,原始数据均方根误差为5.98 m,在消除平面位移误差后减小为4.32 m。基于地形的水文分析表明SRTM DEM与LiDAR DEM计算结果具有一定的差异,地形湿度指数平均值略高,坡度坡长因子和汇流动力指数平均值偏低,离散度偏小,这与SRTM DEM在微地貌以及高坡度地形区存在失真相关。两种DEM数据提取流域特征参数差异较小。上述研究表明SRTM DEM(1″)数据在流域水文分析中具有较大的应用潜力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号