首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study addresses the exhaust emissions of CO2, NOx, SOx, CO, and PM2.5 originated from Baltic Sea shipping in 2006–2009. Numerical results have been computed using the Ship Traffic Emissions Assessment Model. This model is based on the messages of the automatic identification system (AIS), which enable the positioning of ships with a high spatial resolution. The NOx emissions in 2009 were approximately 7 % higher than in 2006, despite the economic recession. However, the SOx emissions in 2009 were approximately 14 % lower, when compared to those in 2006, mainly caused by the fuel requirements of the SOx emission control area (SECA) which became effective in May 2006, but affected also by changes in ship activity. Results are presented on the differential geographic distribution of shipping emissions before (Jan–April 2006) and after (Jan–April 2009) the SECA regulations. The predicted NOx emissions in 2009 substantially exceeded the emissions in 2006 along major ship routes and at numerous harbors, mostly due to the continuous increase in the number of small vessels that use AIS transmitters. Although the SOx emissions have been reduced in 2009 in most major ship routes, these have increased in the vicinity of some harbors and on some densely trafficked routes. A seasonal variation of emissions is also presented, as well as the distribution of emissions in terms of vessel flag state, type, and weight.  相似文献   

2.
We present a multi-model ensemble study for the Baltic Sea, and investigate the combined impact of changing climate, external nutrient supply, and fisheries on the marine ecosystem. The applied regional climate system model contains state-of-the-art component models for the atmosphere, sea ice, ocean, land surface, terrestrial and marine biogeochemistry, and marine food-web. Time-dependent scenario simulations for the period 1960–2100 are performed and uncertainties of future projections are estimated. In addition, reconstructions since 1850 are carried out to evaluate the models sensitivity to external stressors on long time scales. Information from scenario simulations are used to support decision-makers and stakeholders and to raise awareness of climate change, environmental problems, and possible abatement strategies among the general public using geovisualization. It is concluded that the study results are relevant for the Baltic Sea Action Plan of the Helsinki Commission.  相似文献   

3.
The Baltic Sea Action Plan (BSAP) requires tools to simulate effects and costs of various nutrient abatement strategies. Hierarchically connected databases and models of the entire catchment have been created to allow decision makers to view scenarios via the decision support system NEST. Increased intensity in agriculture in transient countries would result in increased nutrient loads to the Baltic Sea, particularly from Poland, the Baltic States, and Russia. Nutrient retentions are high, which means that the nutrient reduction goals of 135 000 tons N and 15 000 tons P, as formulated in the BSAP from 2007, correspond to a reduction in nutrient loadings to watersheds by 675 000 tons N and 158 000 tons P. A cost-minimization model was used to allocate nutrient reductions to measures and countries where the costs for reducing loads are low. The minimum annual cost to meet BSAP basin targets is estimated to 4.7 billion €.  相似文献   

4.
Dynamic model simulations of the future climate and projections of future lifestyles within the Baltic Sea Drainage Basin (BSDB) were considered in this study to estimate potential trends in future nutrient loads to the Baltic Sea. Total nitrogen and total phosphorus loads were estimated using a simple proxy based only on human population (to account for nutrient sources) and stream discharges (to account for nutrient transport). This population-discharge proxy provided a good estimate for nutrient loads across the seven sub-basins of the BSDB considered. All climate scenarios considered here produced increased nutrient loads to the Baltic Sea over the next 100 years. There was variation between the climate scenarios such that sub-basin and regional differences were seen in future nutrient runoff depending on the climate model and scenario considered. Regardless, the results of this study indicate that changes in lifestyle brought about through shifts in consumption and population potentially overshadow the climate effects on future nutrient runoff for the entire BSDB. Regionally, however, lifestyle changes appear relatively more important in the southern regions of the BSDB while climatic changes appear more important in the northern regions with regards to future increases in nutrient loads. From a whole-ecosystem management perspective of the BSDB, this implies that implementation of improved and targeted management practices can still bring about improved conditions in the Baltic Sea in the face of a warmer and wetter future climate.  相似文献   

5.
We quantified horizontal transport patterns and the net exchange of nutrients between shallow regions and the open sea in the Baltic proper. A coupled biogeochemical-physical circulation model was used for transient simulations 1961-2100. The model was driven by regional downscaling of the IPCC climate change scenario A1B from two global General Circulation Models in combination with two nutrient load scenarios. Modeled nutrient transports followed mainly the large-scale internal water circulation and showed only small circulation changes in the future projections. The internal nutrient cycling and exchanges between shallow and deeper waters became intensified, and the internal removal of phosphorus became weaker in the warmer future climate. These effects counteracted the impact from nutrient load reductions according to the Baltic Sea Action Plan. The net effect of climate change and nutrient reductions was an increased net import of dissolved inorganic phosphorus to shallow areas in the Baltic proper.  相似文献   

6.
A method to combine observations and an ensemble of ecological models is suggested to produce a eutrophication assessment. Using threshold values and methodology from the Oslo and Paris Commissions (OSPAR) and the Helsinki Commission (HELCOM), four models are combined to assess eutrophication for the Baltic and North Seas for the year 2006. The assessment indicates that the entire southeastern part of the North Sea, the Kattegat, the Danish Straits, the Gulf of Finland, and the Gulf of Riga as well as parts of the Arkona Basin, the Bornholm Basin, and the Baltic proper may be classified as problem areas. The Bothnian Bay and parts of the Baltic proper, the Bornholm Basin, and the Arkona Basin are classified as potential problem areas. This method is a useful tool for the classification of eutrophication; however, the results depend on the threshold values, and further work is needed within both OSPAR and HELCOM to harmonize these values.  相似文献   

7.
Jäntti H  Hietanen S 《Ambio》2012,41(2):161-169
Primary production in the eutrophic Baltic Sea is limited by nitrogen availability; hence denitrification (natural transformation of nitrate to gaseous N2) in the sediments is crucial in mitigating the effects of eutrophication. This study shows that dissimilatory nitrate reduction to ammonium (DNRA) process, where nitrogen is not removed but instead recycled in the system, dominates nitrate reduction in low oxygen conditions (O2 <110 μM), which have been persistent in the central Gulf of Finland during the past decade. The nitrogen removal rates measured in this study show that nitrogen removal has decreased in the Gulf of Finland compared to rates measured in mid-1990s and the decrease is most likely caused by the increased bottom water hypoxia.  相似文献   

8.
Integrated sediment multiproxy studies and modeling were used to reconstruct past changes in the Baltic Sea ecosystem. Results of natural changes over the past 6000 years in the Baltic Sea ecosystem suggest that forecasted climate warming might enhance environmental problems of the Baltic Sea. Integrated modeling and sediment proxy studies reveal increased sea surface temperatures and expanded seafloor anoxia (in deep basins) during earlier natural warm climate phases, such as the Medieval Climate Anomaly. Under future IPCC scenarios of global warming, there is likely no improvement of bottom water conditions in the Baltic Sea. Thus, the measures already designed to produce a healthier Baltic Sea are insufficient in the long term. The interactions between climate change and anthropogenic impacts on the Baltic Sea should be considered in management, implementation of policy strategies in the Baltic Sea environmental issues, and adaptation to future climate change.  相似文献   

9.
Dense blooms of diazotrophic filamentous cyanobacteria are formed every summer in the Baltic Sea. We estimated their contribution to nitrogen fixation by combining two decades of cyanobacterial biovolume monitoring data with recently measured genera-specific nitrogen fixation rates. In the Bothnian Sea, estimated nitrogen fixation rates were 80 kt N year−1, which has doubled during recent decades and now exceeds external loading from rivers and atmospheric deposition of 69 kt year−1. The estimated contribution to the Baltic Proper was 399 kt N year−1, which agrees well with previous estimates using other approaches and is greater than the external input of 374 kt N year−1. Our approach can potentially be applied to continuously estimate nitrogen loads via nitrogen fixation. Those estimates are crucial for ecosystem adaptive management since internal nitrogen loading may counteract the positive effects of decreased external nutrient loading.  相似文献   

10.
Arheimer B  Dahné J  Donnelly C 《Ambio》2012,41(6):600-612
To reduce eutrophication of the Baltic Sea, all nine surrounding countries have agreed upon reduction targets in the HELCOM Baltic Sea Action Plan (BSAP). Yet, monitoring sites and model concepts for decision support are few. To provide one more tool for analysis of water and nutrient fluxes in the Baltic Sea basin, the HYPE model has been applied to the region (called Balt-HYPE). It was used here for experimenting with land-based remedial measures and future climate projections to quantify the impacts of these on water and nutrient loads to the sea. The results suggest that there is a possibility to reach the BSAP nutrient reduction targets by 2100, and that climate change may both aggravate and help in some aspects. Uncertainties in the model results are large, mainly due to the spread of the climate model projections, but also due to the hydrological model.  相似文献   

11.
Jönsson AM 《Ambio》2011,40(2):121-132
Scientific complexity and uncertainty is a key challenge for environmental risk governance and to understand how risks are framed and communicated is of utmost importance. The Baltic Sea ecosystem is stressed and exposed to different risks like eutrophication, overfishing, and hazardous chemicals. Based on an analysis of the Swedish newspaper Dagens Nyheter, this study discusses media representations of these risks. The results show that the reporting on the Baltic Sea has been fairly stable since the beginning of the 1990s. Many articles acknowledge several risks, but eutrophication receives the most attention and is also considered the biggest threat. Authorities, experts, organizations, and politicians are the dominating actors, while citizens and industry representatives are more or less invisible. Eutrophication is not framed in terms of uncertainty concerning the risk and consequences, but rather in terms of main causes.  相似文献   

12.
The external phosphorus (P) loading has been halved, but the P content in the water column and the area of anoxic bottoms in Baltic proper has increased during the last 30 years. This can be explained by a temporary internal source of dissolved inorganic phosphorus (DIP) that is turned on when the water above the bottom sediment becomes anoxic. A load-response model, explaining the evolution from 1980 to 2005, suggests that the average specific DIP flux from anoxic bottoms in the Baltic proper is about 2.3 g P m−2 year−1. This is commensurable with fluxes estimated in situ from anoxic bottoms in the open Baltic proper and from hydrographic data in the deep part of Bornholm Basin. Oxygenation of anoxic bottoms, natural or manmade, may quickly turn off the internal P source from anoxic bottoms. This new P-paradigm should have far-reaching implications for abatement of eutrophication in the Baltic proper.

Electronic supplementary material

The online version of this article (doi:10.1007/s13280-013-0441-3) contains supplementary material, which is available to authorized users.  相似文献   

13.
Concentrations of polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs), and dioxin-like polychlorinated biphenyls (dl-PCBs) in the southern Baltic herring (Clupea harengus), sprat (Sprattus sprattus), and salmon (Salmo salar) are reported.The significant interspecies and season-specific differences in PCDD/Fs and dl-PCBs concentrations were observed. The contribution of dl-PCBs to the total toxicity equivalents (TEQs) ranged between 50% and 70%, dependently on fish species. In all samples, concentrations of PCDF were higher in comparison with that of PCDD.The permissible limits of the content of PCDD/Fs and dl-PCBs (8 pg g−1 fresh weight for the sum of PCDD/Fs and dl-PCBs, and 4 pg g−1 fresh weight for the PCDD/Fs) were exceeded mainly in salmon samples (in 80% of salmon samples studied). The elevated levels of PCDD/F and dl-PCB were observed only in two of seventy two herring samples, and in ten of 62 sprat samples.The multiple regression analysis revealed that fish lipid content, and concentration of PCB 153, used simultaneously, might be useful in the prediction of TEQ values of fish samples. These two variables explained more than 80% of total variance. For all fish species studied, the correlation coefficients obtained with the multiple regression analysis were higher than that obtained with the regression analysis involving total TEQ values, and only one independent variable: fish lipid content.  相似文献   

14.
This paper systematically reviews the literature on how to reduce nutrient emissions to the Baltic Sea cost-effectively and considerations for allocating these costs fairly among countries. The literature shows conclusively that the reduction targets of the Baltic Sea Action Plan (BSAP) could be achieved at considerably lower cost, if countries would cooperate to implement the least costly abatement plan. Focusing on phosphorus abatement could be prudent as the often recommended measures—wastewater treatment and wetlands—abate nitrogen too. An implication of our review is that the potential for restoring the Baltic Sea to good health is undermined by an abatement strategy that is more costly than necessary and likely to be perceived as unfair by several countries. Neither the BSAP nor the cost-effective solution meet the surveyed criteria for fairness, implying a need for side-payments.Supplementary InformationThe online version contains supplementary material available at 10.1007/s13280-021-01580-4.  相似文献   

15.
Before climate change is considered in long-term coastal management, it is necessary to investigate how institutional stakeholders in coastal management conceptualize climate change, as their awareness will ultimately affect their actions. Using questionnaires in eight Baltic Sea riparian countries, this study examines environmental managers' awareness of climate change. Our results indicate that problems related to global warming are deemed secondary to short-term social and economic issues. Respondents agree that problems caused by global warming will become increasingly important, but pay little attention to adaptation and mitigation strategies. Current environmental problems are expected to continue to be urgent in the future. We conclude that an apparent gap exists between decision making, public concerns, and scientific consensus, resulting in a situation in which the latest evidence rarely influences commonly held opinions.  相似文献   

16.
Ecosystems around the world are increasingly exposed to multiple, often interacting human activities, leading to pressures and possibly environmental state changes. Decision support tools (DSTs) can assist environmental managers and policy makers to evaluate the current status of ecosystems (i.e. assessment tools) and the consequences of alternative policies or management scenarios (i.e. planning tools) to make the best possible decision based on prevailing knowledge and uncertainties. However, to be confident in DST outcomes it is imperative that known sources of uncertainty such as sampling and measurement error, model structure, and parameter use are quantified, documented, and addressed throughout the DST set-up, calibration, and validation processes. Here we provide a brief overview of the main sources of uncertainty and methods currently available to quantify uncertainty in DST input and output. We then review 42 existing DSTs that were designed to manage anthropogenic pressures in the Baltic Sea to summarise how and what sources of uncertainties were addressed within planning and assessment tools. Based on our findings, we recommend future DST development to adhere to good modelling practise principles, and to better document and communicate uncertainty among stakeholders.Electronic supplementary materialThe online version of this article (doi:10.1007/s13280-020-01385-x) contains supplementary material, which is available to authorized users.  相似文献   

17.
Climate change scenarios concerning the Baltic Sea predict increase in surface water temperatures. Pikeperch (Sander lucioperca (L.)) inhabits the coastal areas of the northern Baltic Sea and is an important fish species for the Finnish fisheries. The year-class strength of pikeperch varies strongly between years and significantly depends on water temperature. We aimed to study the effects of changing temperature conditions on pikeperch fisheries and distribution based on commercial catch data from the period 1980–2008 in the Finnish coastal areas of the Baltic Sea. The results indicated that warmer summers will produce stronger pikeperch year-classes that consequently contribute significantly to the future catches. The average temperature in June–July explained 40% of the variation in the year-class catches in the Gulf of Finland and 73% in July–August in the Archipelago Sea. During the study period, the distribution of pikeperch catches expanded toward north along the coasts of the Bothnian Sea.  相似文献   

18.
In the future, the Baltic Sea ecosystem will be impacted both by climate change and by riverine and atmospheric nutrient inputs. Multi-model ensemble simulations comprising one IPCC scenario (A1B), two global climate models, two regional climate models, and three Baltic Sea ecosystem models were performed to elucidate the combined effect of climate change and changes in nutrient inputs. This study focuses on the occurrence of extreme events in the projected future climate. Results suggest that the number of days favoring cyanobacteria blooms could increase, anoxic events may become more frequent and last longer, and salinity may tend to decrease. Nutrient load reductions following the Baltic Sea Action Plan can reduce the deterioration of oxygen conditions.  相似文献   

19.
This seven-year survey was primarily targeted to quantification of production of nodularin-R (NOD-R), a cyclic pentapeptide hepatotoxin, in Baltic Sea cyanobacteria waterblooms. Additionally, NOD-R and microcystin-LR (MC-LR; a cyclic heptapeptide toxin) sedimentation rates and NOD-R sediment storage were estimated. NOD-R production (70-2450 μg m−3; ∼1 kg km−2 per season) and sedimentation rates (particles; 0.03-5.7 μg m−2 d−1; ∼0.3 kg km−2 per season) were highly variable over space and time. Cell numbers of Nodularia spumigena did not correlate with NOD-R quantities. Dissolved NOD-R comprised 57-100% of total NOD-R in the predominantly senescent, low-intensity phytoplankton blooms and seston. Unprecedentedly intensive MC-LR sedimentation (0.56 μg m−2 d−1) occurred in 2004. Hepatotoxin sedimentation rates highly exceeded those of anthropogenic xenobiotics. NOD-R storage in surficial sediments was 0.4-20 μg kg−1 (∼0.1 kg km−2). Loss of NOD-R within the chain consisting of phytoplankton, seston and soft sediments seemed very effective.  相似文献   

20.
Hassler B 《Ambio》2011,40(2):170-178
Marine governance of oil transportation is complex. Due to difficulties in effectively monitoring procedures on vessels en voyage, incentives to save costs by not following established regulations on issues such as cleaning of tanks, crew size, and safe navigation may be substantial. The issue of problem structure is placed in focus, that is, to what degree the specific characteristics and complexity of intentional versus accidental oil spill risks affect institutional responses. It is shown that whereas the risk of accidental oil spills primarily has been met by technical requirements on the vessels in combination with Port State control, attempts have been made to curb intentional pollution by for example increased surveillance and smart governance mechanisms such as the No-Special-Fee system. It is suggested that environmental safety could be improved by increased use of smart governance mechanisms tightly adapted to key actors’ incentives to alter behavior in preferable directions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号