首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 156 毫秒
1.
龚士良 《力学学报》2002,10(4):378-384
对上海软粘土的颗粒及集合体成分、孔径分布、微结构、孔隙溶液与阳离子交换性作了分析 ,对固结前后的孔径变化与人工回灌对土体性质可能带来的影响作了探讨 ,从物理化学角度阐述了软粘土微观特性对土体固结变形及地面沉降的影响.  相似文献   

2.
高盼  陈波  胡云世  苇广 《实验力学》2017,(3):423-430
为分析制样含水量对重塑软黏土的力学特性影响,用单向固结仪和三轴仪分别对不同泥浆含水量固结而成的重塑样开展了单向压缩试验和固结不排水剪切三轴试验。试验结果表明,重塑样的初始孔隙比随制样含水量的增大而增大,从而引起压缩曲线的上移以及压缩指数的增大,土体的抗剪强度减小,孔隙水压力增大;但初始含水量对土体的有效应力比和临界状态影响不大;制样含水量对重塑样力学特性的影响的界限含水量约为2.0倍液限含水量。最后,用孔隙指数对试验结果归一化,得到不同初始孔隙比重塑样的压缩曲线和剪切强度可基本归一化为土的固有压缩曲线和固有强度曲线。  相似文献   

3.
目前报道的不少实验成果,在得出粉土热物性指标和某一因素的关系时,并未保持其他影响因素固定不变,因而只能说明粉土热物性指标随影响因素的定性变化趋势。要建立热物性指标与影响因素间的确定性关系和推算公式,需要更为严格的实验,即研究某一影响因素时保持其他因素不变。通过一系列实验,对粉土试样的热导率进行研究,在排除孔隙比、干密度、土样成分等影响因素的情况下,独立分析了粉土的热导率与含水量间的关系。实验结果表明粉土的热导率随含水量的增大而增大,其变化规律与砂土一致,都符合对数变化规律,且整个变化过程可分为两个阶段。同时还分析了粉土的内在传热机制,有效描述和解释粉土热导率随含水量的变化规律。分析结果表明用对数形式来描述粉土热导率与含水量之间的关系是正确的。    相似文献   

4.
采用升级改造后的DSJ-2型直剪仪,在不同法向应力水平下,开展了不同含水量的粘性土与不同介质性质的地下结构物接触界面的单剪试验,探索揭示粘土含水量变化对接触界面的剪切力学行为影响规律。研究结果表明:随着粘土含水量的增大,基底刚度较大时,剪应力-剪切位移曲线应变硬化现象愈来愈明显,反之,愈来愈不明显。剪切法向应力处于较低水平时,粘土的含水量对刚度较大的混凝土基底界面剪应力峰值强度影响更明显,反之,刚度相对较小的木材基底更明显。不同性质基底同粘土单剪时,随其含水量的不断提高,接触界面的内摩擦角均是不断降低,但其降低幅度不尽相同,结构物的刚度对接触界面内摩擦角起控制作用。随着粘土含水量的增大,接触界面的粘聚力总体变化规律为先增大,增大到某一峰值点后降低,界面的粘聚力由土体与结构物共同控制,且同结构物的刚度大小和界面自身特性均密切相关。  相似文献   

5.
利用 Darcy 渗透定律,通过引入衬砌和土体的相对渗透系数,建立了隧洞边界部分透水条件。将土骨架视为具有分数导数粘弹性本构关系的粘弹性体,基于 Biot 理论,通过界面连续性条件在频率域内给出了简谐轴对称荷载或流体压力作用下饱和粘弹性土-弹性衬砌系统耦合振动时饱和土、衬砌的位移、应力、孔隙水压力表达式,并通过算例分别考察了简谐轴对称荷载、流体压力作用下的分数导数阶数、材料参数比、渗透系数对系统的径向位移幅值 U 、孔隙水压力幅值P 的影响,结果表明:随着分数导数阶数和材料参数比的增加,系统的响应幅值逐渐减小;随着渗透系数κ的增加,轴对称荷载作用下的土体位移幅值和孔隙水压力幅值逐渐减小,当κ大于100时,U 和 P 值无明显变化,流体压力作用下的土体位移幅值和孔隙水压力幅值逐渐增大,当κ大于1时, U 和 P 值无明显变化。  相似文献   

6.
基于多孔介质理论的饱和土体中圆形隧道洞稳态响应分析   总被引:3,自引:0,他引:3  
基于饱和多孔介质理论,将土体视为液固饱和两相介质,研究分析了粘弹性饱和土体中圆形隧道洞的稳态响应问题,得到了隧道洞边界作用轴对称荷载时的径向位移幅值、径向应力幅值和孔隙水压力幅值的稳态响应解,研究了渗透系数、阻尼系数对圆形隧道洞稳态响应的影响.  相似文献   

7.
李本平 《爆炸与冲击》2005,25(3):281-284
为了分析冲击荷载作用下粘土的孔隙水压力的增长规律,为分析粘土介质的动态响应、动力固结加固提供理论依据,将冲击瞬态荷载简化为三角形荷载,通过编制瞬变动态弹塑性有限元程序,对冲击荷载作用下粘土孔隙水压的动态响应进行了模拟,得出了冲击荷载作用下粘土孔隙水压的增长规律,发现孔隙水压力峰值无论是随水平距离还是随深度的增加均呈指数形式衰减,和实际工程施工中孔隙水压的监测数据相吻合。  相似文献   

8.
非饱和土土水特征曲线(SWCC)测试与预测   总被引:8,自引:0,他引:8  
非饱和土土水特征曲线(SWCC)表示了土中含水量与吸力之间的关系。文章介绍了6种常用方法,各有其适用范围。体积压力板仪可量测最大基质吸力值为1500kPa的干燥曲线和浸湿曲线;超过1500kPa时,可用盐溶液法进行量测;Tem-ple仪可量测基质吸力达100kPa的干燥曲线;滤纸法可用于测量土体的基质吸力与总吸力;Dew-point电位计可用于量测土样总吸力变化,尤其适合渗透吸力的量测;TDR探头适合于量测小于300kPa的基质吸力。用GDS非饱和土三轴仪可以进行SWCC测试,测试范围主要取决于陶土板的进气值。用准确的数学模型对测得的含水量、吸力数据进行拟合,对于预测非饱和土力学性质、渗透系数、抗剪强度及分析边坡稳定性有重要意义。由于准确测试SWCC难度较大,并且测试影响因素较多,所以根据土体孔隙大小分布和颗粒大小分布情况预测SWCC,也是一种较好的方法。  相似文献   

9.
为深入研究盾构施工过程中饱和土所受扰动问题,在已有研究的基础上,使用Biot固结方程变换求解得出的土体初始位移解和超孔隙水压力解,经坐标变换,推导了包括面板式刀盘与辐条式刀盘在内的,刀盘正面摩擦力和刀盘侧面摩擦力引起饱和土体竖向变形与孔隙水压力值解析式,对引起土体变形各因素进行模拟,并给出了盾构施工引起饱和土竖向总变形与总超静孔隙水压力的表达式。结合工程算例进行计算模拟,切口附加推力、盾壳摩擦力、土体损失的沉降曲线在垂直于盾构推进方向上对称分布,最大值集中在盾构轴线正上方。盾构刀盘正面与侧面摩擦力对地表盾构轴线两侧产生非对称变形,在盾构轴线正上方的地表处刀盘因素对地表变形基本无影响。两类刀盘对地表变形影响区别不大,辐条式刀盘在刀盘所处断面处引起隧道周围孔隙水压力的响应较为明显,沿盾构方向衰减也较快。  相似文献   

10.
白明洲  段钢  张爱军 《力学学报》2006,14(5):603-608
含水量是非饱和土力学性质的重要控制因素,非饱和粘性土是北京地铁苏州街车站隧道的主要围岩土体类型,应用钻孔取样的方法取得隧道周边区域内的土体系统样本,通过三轴试验和含水量测试建立了非饱和粘性土围岩的变形和强度参数与含水量的相关性,进而明确了该工程场地非饱和粘性土的主要参数与含水量的关系,以此为基础确定了工程场地不同区域的土体力学参数,通过有限元数值分析方法研究了施工过程中的围岩土体稳定性与地表沉降量,明确了考虑土体含水量变化条件下的隧道开挖施工过程中的围岩土体稳定性状况。  相似文献   

11.
The cone penetrometer is a simple versatile device which is widely used to monitor the strength of a soil in terms of its resistance to the penetration of a standard cone. The soil penetration resistance is a function of soil moisture content, soil specific weight and soil type. The soil type is characterised by means of a clay ratio which is the ratio of the clay content of the soil to the content of silt and sand.Based on the classical bearing capacity theories for strip foundations, a general cone penetration resistance equation is developed to represent the variability of cohesion and friction angle by means of soil type and moisture content. The empirical relationship is shown to give an accurate prediction of the cone penetration resistance for a wide range of soils from a loamy sand to a heavy clay (clay ratios 0.10–1.60) and over a wide spectrum of soil moisture contents from 10 to 65% w/w.  相似文献   

12.
Energy conservation in buildings, in particular in underground constructions, is strongly affected by the thermal properties of the soil surrounding such buildings. Experimental results of thermal conductivity studies of different soils are reported based on a quasisteady method [1]. The soil sample is placed in the annular space between two concentric tubes and is heated uniformly on the inside wall keeping the outside wall insulated. Four different types of soils (Moon Valley, River Sand, In-situ, and Ridgedale), are studied over a temperature range from ?5°C to 30°C for three different densities and moisture contents ranging from 0.5 to approximately 12% (by weight). The results indicate that the moisture content is by far the most important parameter. The thermal conductivity may increase by almost an order of magnitude as the moisture content increases. In addition, there may be a strong variation of the thermal conductivity in the phase transition region from unfrozen to frozen soils.  相似文献   

13.
An analysis of soil thermal conductivity data shows that, at very low moisture content, this property first varies insignificantly and then begins to increase from a certain critical moisture content, whose value tends to depend on clay mass fraction. Two simple models evaluating the critical moisture content were developed; the first one is a fraction of the permanent wilting point; the second one is a simple linear function dependent on clay mass fraction. An insignificant variation of soil thermal conductivity is observed at 20°C, within a water pressure head ranging from 1×103 to 1×103m, while for higher temperatures (45–50°C) from 5000 to 100000m. Three extensions of the enhanced thermal conductivity model by Sundberg, namely SUN-1, SUN-2 and SUN-3, were proposed and tested. They produce an average root mean square error of 27%, 24% and 30%, respectively, with respect to experimental data. SUN-1and SUN-2 predictions could be further improved if better estimates of thermal conductivity at the dry state and the permanent wilting point were provided. SUN-3 is a simple model which does not require information about the PWP and critical moisture content. All SUN models have a potential for implementing the latent heat transfer component.  相似文献   

14.
An approach is developed to examine the mean and uncertainty of thermal conductivity of a heterogeneous multiparticle system, where the particle concentration or void fraction is treated as a truncated fractal distribution. The truncated fractal distribution is then integrated into the Maxwell model, which is equivalent to a cell model in which the multiparticle system is conceptualized as a spherical fluid cell that envelopes a solid particle. The developed mean thermal conductivity is compared with four experimental data sets of liquid-saturated media from the literature. The effect of fractal characteristics is quantified and discussed. Incorporating particle concentration or void fraction truncated fractal distribution can better capture scatters in the experimental results. The thermal conductivity and its standard deviation decrease with increasing fractal dimensions. When the void fraction is truncated fractal, the uncertainty increases mostly in the low mean void fraction range and drops more quickly with the increasing mean void fraction compared to the case where the particle concentration is truncated fractal. In a typical case of multiparticle system when the solid particles are more conductive than the fluid, the faster increase rate of standard deviation with the ratio of solid over fluid conductivities occurs when the mean void fraction is smaller.  相似文献   

15.
Experiments were conducted in a laboratory soil bin to evaluate the performance of coated floats in different soils. Two coating materials were studied, namely enamel and Teflon, and three soil types, namely clay, loam and sandy soil were used for testing. The forces required to overcome the drag of the floats and pull them over the soil surface were measured. The normal loads were varied to 25, 44 and 64 N. The effect of moisture content (db) was evaluated by varying the soil moisture from 21.2 to 62.4% for clay soil, 16.6 to 36.1% for loam soil and 0.7 to 13.8% for sandy soil. All tests were conducted at a constant speed of 0.20 m/s. The performance of the enamel coated float was superior to Teflon and uncoated floats in all soil conditions. In clay and loam soils, the drag force increased initially until the soil moisture content reached the plastic limit. The drag forces showed a decreasing trend once soil moisture exceeded the plastic limit. In sandy soil, the drag force increased with increase in moisture content. The overall reductions for the enamel coated float compared to uncoated float were from 4 to 64% in clay soil, 16 to 46% in loam soil and 26 to 45% in sandy soil. Besides this superior performance, the enamel coated float compared to the other floats showed excellent resistance to wear due to abrasion and superior scouring.  相似文献   

16.
Field measurements were made of soil density and moisture patterns under different vehicle tire paths with varying external pressures and number of passes. In addition, laboratory index tests were performed to determine the compaction behaviour of the same soil. Using these results, a prediction equation of dry density in terms of applied pressure and moisture content was obtained for the clay soil. A previously developed equation for sandy soil was modified for the complete range of moisture contents encountered. Estimation of shear strength for the clay soil was made using plastic and liquid limits.  相似文献   

17.
The effects of low-to-medium slip, lug spacing and moisture content on lug forces in clay soil were investigated in a laboratory soil bin with the help of two model lugs. Perpendicular and radial soil reactions on the lug were measured and they were converted to lug pull and lift forces. The lug slip was varied from 5 to 10, 15, 20 and 25%. The measurements were conducted in clay soils with 6.3, 27.4 and 51% soil moisture contents. The lug spacing was varied from 20° to 30° and 40°. The perpendicular, pull and lift forces increased after lug entry into the soil and, after attaining a certain peak value, they decreased and reached a zero value at lug exit. The increase in lug slip from 5 to 25% caused an increase in lug forces on both lugs. The increase in the soil moisture content from 6.3 to 27.6% caused increase in lug forces on both lugs, but further increase in moisture content to 51% decreased the lug forces. Lug spacing showed a significant effect on lug forces produced by the succeeding lug. The increase in lug slip increased the lug forces at any given lug spacing and moisture content.  相似文献   

18.
Lehmann  P.  Stähli  M.  Papritz  A.  Gygi  A.  Flühler  H. 《Transport in Porous Media》2003,52(3):313-332
Heat transport in soils depends on the spatial arrangement of solids, ice, air and water. In this study, we present a modified fractal approach to model the pore structure of soils and to describe its influence on the thermal conductivity. Three different fractal generators were sequentially applied to characterize a wide range of particle- and pore-size distributions. The given porosity and particle-size distribution of a clay, clay loam, silt loam and loamy sand were successfully modeled. The thermal conductivity of the fractal soil model was calculated using a network of resistors. We applied a renormalization approach to include the effects of smaller scale structures. The predictions were compared with the empirical Johansen' model (Johansen, 1975), that postulates a simple linear relationship between ice content and thermal conductivity. For high ice-saturated conditions, the calculated thermal conductivity agrees well with the empirical model. To describe partial ice saturation, we assumed that some pores were coated by ice films enclosing the air-filled center. In addition, we introduced a reduced heat exchange coefficient of the particles for unsaturated conditions. The ice-saturated and -unsaturated thermal conductivity calculated with this approach was very similar to that estimated by the empirical model. The variation of the thermal conductivities for different spatial arrangements of pores and particles in the prefractals were determined. Extreme values deviate more than 50% from the mean values.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号