首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background and purpose:

P2Y receptors evoke Ca2+ signals in vascular smooth muscle cells and regulate contraction and proliferation, but the roles of the different P2Y receptor subtypes are incompletely resolved.

Experimental approach:

Quantitative PCR was used to define expression of mRNA encoding P2Y receptor subtypes in freshly isolated and cultured rat aortic smooth muscle cells (ASMC). Fluorescent indicators in combination with selective ligands were used to measure the changes in cytosolic free [Ca2+] in cultured ASMC evoked by each P2Y receptor subtype.

Key results:

The mRNA for all rat P2Y receptor subtypes are expressed at various levels in cultured ASMC. Four P2Y receptor subtypes (P2Y1, P2Y2, P2Y4 and P2Y6) evoke Ca2+ signals that require activation of phospholipase C and comprise both release of Ca2+ from stores and Ca2+ entry across the plasma membrane.

Conclusions and implications:

Combining analysis of P2Y receptor expression with functional analyses using selective agonists and antagonists, we isolated the Ca2+ signals evoked in ASMC by activation of P2Y1, P2Y2, P2Y4 and P2Y6 receptors.  相似文献   

2.
Summary By measuring the 45Ca2+ movement in saponin-skinned primary cultured rat aortic smooth muscle cells, we examined the specificity of the inhibitory effect of heparin on the IP3-induced Ca2+ release. IP3 (100 mol/l) markedly (98%) decreased the MgATP-dependent 45Ca2+ content in the non-mitochondrial Ca2+ stores in the presence of 1 mol/l free Ca2+. Heparin (1–100 g/ml) dose-dependently inhibited this Ca2+ release by IP3. In Ca2+-free solution, heparin (100 g/ml) inhibited the increases in 45Ca2+ efflux rate evoked by 10 mol/l IP3. De-N-sulfated heparin did not inhibit the IP3-induced Ca2+ release. Hyaluronic acid, heparan sulfate, chondroitin sulfate A, chondroitin sulfate B, chondroitin sulfate C and 2,6-disulfated d-glucosamine had no inhibitory effects on the IP3-induced Ca2+ release. High concentrations (over 1 mg/ml) of heparin inhibited the 45Ca2+ influx and decreased the Ca2+ content in skinned cells. These results suggest that heparin (1–100 g/ml) specifically inhibits the IP3-induced increase in Ca2+ permeability of Ca2+ stores and that three sulfate groups at different locations on the molecule of heparin, two at the d-glucosamine and one at the iduronic acid, may be important for this action, in skinned vascular smooth muscle cells, in culture. Send offprint requests to H. Kanaide at the above address  相似文献   

3.
The effects of monensin, an activator of Na(+)/H(+) exchanger (NHE), on capacitative Ca(2+) entry (CCE) were investigated using A7r5 cells. Capacitative Ca(2+) entry was induced by elevation of extracellular Ca(2+) concentrations of A7r5 cells in which stored Ca(2+) had been depleted by previous administration of thapsigargin. Capacitative Ca(2+) entry was abolished by pretreatment of the cells with SKF-96365 (1-[beta-(3-[4-methoxyphenyl]propoxy)-4-methoxyphenethyl]-1H-imidazole hydrochloride) but was not affected by pretreatment with verapamil. Monensin significantly increased capacitative Ca(2+) entry. On the other hand, 5-hydroxytryptamine-induced inositol monophosphate accumulation and subsequent intracellular Ca(2+) release from its stores were significantly inhibited by monensin, while thapsigargin-induced Ca(2+) release was not affected by monensin. These results suggest that monensin has diverse actions on capacitative Ca(2+) entry and agonist-induced release of stored Ca(2+) in vascular smooth muscle cells.  相似文献   

4.
2-Benzyloxybenzaldehyde (CCY1a) inhibited the formyl-Met-Leu-Phe (fMLP)-induced elevation of cytosolic [Ca2+] ([Ca2+]i) in rat neutrophils. The late plateau phase, but not the initial Ca2+ spike, of the fMLP-induced [Ca2+]i change was inhibited by CCY1a. In the absence of external Ca2+, CCY1a had no appreciable effect on either the fMLP- or cyclopiazonic acid (CPA)-induced [Ca2+]i elevation. CCY1a failed to inhibit [Ca2+]i changes induced by N-ethylmaleimide, GEA3162, ionomycin or sphingosine, but slightly inhibited the Ca2+ signals elicited by ATP or interleukin-8 (IL-8). In a classical Ca2+ readdition protocol, addition of CCY1a after cell activation strongly inhibited the [Ca2+]i response to fMLP, whilst that to CPA was only slightly reduced. CCY1a nearly abrogated the fMLP-stimulated Mn2+ influx but was less effective on the CPA-induced response. CCY1a attenuated the levels of tyrosine-phosphorylated bands in the 70–85 kDa molecular mass range. CCY1a had no effect on the basal [Ca2+]i level, the pharmacologically isolated plasma membrane Ca2+-ATPase activity or on the mitochondrial membrane potential. Thus, CCY1a blocks fMLP-induced Ca2+ entry into neutrophils probably by blocking the relevant Ca2+ channel directly or, alternatively, indirectly through the attenuation of tyrosine phosphorylation of some cellular proteins.  相似文献   

5.
The effect of thapsigargin, an inhibitor of the sarco-endoplasmic reticulum Ca2+-ATPase, on voltage-dependent Ca2+ channels has been investigated in the A7r5 cell line and in membrane preparations from rat aorta, heart and brain. Patch-clamp technique showed that, at micromolar concentrations, thapsigargin inhibited the L-type Ca2+ channel current in A7r5 cells. It depressed the current at all voltages without change in the steady state inactivation curve. The rates of inactivation of the Ca2+ current were highly variable among the cells suggesting that more than one component of L-type Ca2+ current coexist in A7r5 cells, differing in the kinetics of inactivation. Thapsigargin appeared to be more potent on the slower-inactivating Ca2+ current than on the faster-inactivating one. In the same range of concentrations, thapsigargin inhibited the specific binding of 3H(+)-isradipine in intact cells while 45Ca2+ uptake in intracellular stores of skinned cells was inhibited at nanomolar concentrations. The equilibrium dissociation constant of 3H(+)-isradipine was increased in the presence of thapsigargin as a result of an increase of the dissociation rate constant indicating that the inhibitory effect of the antagonist cannot be attributed to a simple competitive interaction with the dihydropyridine binding site. Maximum binding capacity was unaffected. A similar pattern of inhibition of 3H(+)-isradipine binding was observed in membrane preparations from rat aorta, heart and brain.Those results indicate that, at micromolar concentrations, thapsigargin inhibits the voltage-dependent Ca2+ current by a direct interaction with the L-type Ca2+ channels.On leave from the A. A. Bogomoletz Institute of Physiology, Kiev, Ukraine  相似文献   

6.
Deficiency of delta-sarcoglycan (delta-SG), a component of the dystrophin-glycoprotein complex (DGC), causes skeletal muscular dystrophy and cardiomyopathy in BIO14.6 hamsters. Here, we studied the involvement of abnormal Ca2+ homeostasis in muscle degeneration and the protective effect of drugs against Ca2+ handling proteins in vivo as well as in vitro. First, we characterized the properties of cultured myotubes from muscles of normal and BIO14.6 hamsters (30-60 days old). While there were no apparent differences in the levels of expression of various Ca2+ handling proteins (L-type Ca2+ channel, ryanodine receptor, SR-Ca2+ ATPase, and Na+/Ca2+ exchanger), muscle-specific proteins (contractile actin and acetylcholine receptor), or DGC member proteins except SGs, BIO14.6 myotubes showed a high degree of susceptibility to mechanical stressors, such as cyclic stretching and hypo-osmotic stress as compared to normal myotubes, as evidenced by marked increases in creatine phosphokinase (CK) release and bleb formation. BIO14.6 myotubes showed abnormal Ca2+ homeostasis characterized by elevated cytosolic Ca2+ concentration, frequent Ca2+ oscillation, and increased 45Ca2+ uptake. These abnormal Ca2+ events and CK release were significantly prevented by Ca2+ handling drugs, tranilast, diltiazem, and FK506. The calpain inhibitor E64 prevented CK release, but not 45Ca2+ uptake. Some of these drugs (tranilast, diltiazem, and FK506) also exerted a significant protective effect for muscle degeneration in BIO14.6 hamsters and mdx mice in vivo. These observations suggest that elevated Ca2+ entry through sarcolemmal Ca2+ channels predominantly contributes to muscle degeneration and that the drugs tested here may have novel therapeutic potential against muscular dystrophy.  相似文献   

7.
Mechanisms of Na+ and Ca2+ influx into respiratory neurons during hypoxia   总被引:3,自引:0,他引:3  
Changes in intracellular Na+ and Ca2+ in inspiratory neurons of neonatal mice were examined by using ion-selective fluorescent indicator dyes SBFI and fura-2, respectively. Both [Na+]i and [Ca2+]i signals showed rhythmic elevations, correlating with the inspiratory motor output. Brief (2-3 min) hypoxia, induced initial potentiation of rhythmic transients followed by their depression. During hypoxia, the basal [Na+]i and [Ca2+]i levels slowly increased, reflecting development of an inward current (Im). By antagonizing specific mechanisms of Na+ and Ca2+ transport we found that increases in [Na+]i, [Ca2+]i and Im due to hypoxia are suppressed by CNQX, nifedipine, riluzole and flufenamic acid, indicating contribution of AMPA/kainate receptors, persistent Na+ channels, L-type Ca2+ channels and Ca2+-sensitive non-selective cationic channels, respectively. The blockers decreased also the amplitude of the inspiratory bursts. Modification of mitochondrial properties with FCCP and cyclosporine A decreased [Ca2+]i elevations due to hypoxia by about 25%. After depletion of internal Ca2+ stores with thapsigargin, the blockade of NMDA receptors, Na+/K+ pump, Na+/H+ and Na+/Ca2+ exchange, the hypoxic response was not changed. We conclude that slow [Na+]i and [Ca2+]i increases in inspiratory neurons during hypoxia are caused by Na+ and Ca2+ entry due to combined activation of persistent Na+ and L-type Ca2+ channels and AMPA/kainate receptors.  相似文献   

8.
The actions of maitotoxin were studied using cultured brainstem cells and adrenal chromaffin cells. Maitotoxin induced a profound increase in the Ca2+ influx into cultured brainstem cells after a brief lag period. The maitotoxin-induced Ca2+ influx was suppressed by various voltage-dependent Ca2+ channel blockers such as Co2+, Mn2+, verapamil and diltiazem. Maitotoxin-catecholamine release in brainstem cells initiated to increase after a lag period of about 1 min and the increase continued even at 4 min after treatment, while in the adrenal chromaffin cells the release started after an about 1-min lag period to attain a maximum within first 2-min and gradually decrease thereafter. These results suggest that maitotoxin acts on Ca2+ channels to increase the Ca2+ influx, accompanied by enhancement of catecholamine release in the brainstem cells with a different temporal profile from that in the adrenal chromaffin cells.  相似文献   

9.
The highly potent marine toxin maitotoxin (MTX) evoked an increase in cytosolic Ca(2+) levels in fura-2 loaded rat aortic smooth muscle cells, which was dependent on extracellular Ca(2+). This increase was almost fully inhibited by KB-R7943, a potent selective inhibitor of the reverse mode of the Na(+)/Ca(2+) exchanger (NCX). Cell viability was assessed using ethidium bromide uptake and the alamarBlue cytotoxicity assay. In both assays MTX-induced toxicity was attenuated by KB-R7943, as well as by MDL 28170, a membrane permeable calpain inhibitor. Maitotoxin-evoked contractions of rat aortic strip preparations in vitro, which persist following washout of the toxin, were relaxed by subsequent addition of KB-R7943 or MDL 28170, either in the presence of, or following washout of MTX. These results suggest that MTX targets the Na(+)/Ca(2+) exchanger and causes it to operate in reverse mode (Na(+) efflux/Ca(2+) influx), thus leading to calpain activation, NCX cleavage, secondary Ca(2+) overload and cell death.  相似文献   

10.
Summary Effects of calcitonin gene-related peptide (CGRP), a putative non-adrenergic non-cholinergic neutrotransmitter on the electrical properties of the cell membrane, were investigated in enzymically dispersed smooth muscle cells from rat vas deferens. Under current clamp conditions, CGRP (up to 10–7 M) did not induce significant changes in membrane potentials or input resistance in the resting state. The configurations of action potentials elicited by depolarizing current pulses were also unaffected, except that a prolongation of the duration of the action potentials by a high dose (10–7 M) of CGRP was observed in some of the cells. Under whole cell voltage clamp conditions, the transient and sustained K+ currents, activated by depolarizing voltage-steps, were apparently decreased in the presence of 10–9 to 10–7 M CGRP. The peptide increased the voltage-gated Ca2+ current in cells loaded with 145 mM Cs+ solution in order to block the K+ currents. The voltage-dependency of the peak Ca2+ current was not changed by CGRP. Ba2+ (10.8 mM) was used as a charge carrier for the Ca2+-channel current to clarify further the effects of CGRP on the properties of the current. CGRP (10–8 M) delayed the inactivation time course of the Ca2+-channel current and slowed the recovery from inactivation. The peptide did not affect the steady-state inactivation measured by changing the holding potential. The Ca2+-channel current in the presence of CGRP was suppressed by nicardipine (10–6 M) to the same extent as the current under control conditions. The results suggest that CGRP modifies the L-type Ca2+ channel in smooth muscle cells. Correspondence to N. Matsuki at the above address  相似文献   

11.
We have investigated the effects of the rat-specific vasoconstrictor agent norbormide on the mechanical and electrophysiological properties of rat non-vascular smooth muscles. Norbormide (50 μM) did not affect the resting tone of urinary bladder, tracheal, and duodenal rings. In all tissues, KCl-induced concentration–response curves were shifted downward by norbormide (5 and 50 μM). In urinary bladder and tracheal rings, norbormide inhibited contractile responses to carbachol only at the higher concentration (50 μM). In single gastric fundus myocytes, 50 μM norbormide inhibited L-type Ca2+ current (ICa(L)) by about 60%, neither affecting both activation and inactivation rates of the current nor the current–voltage curve along the voltage axis. Our results indicate that rat non-vascular smooth muscles are relaxed by norbormide with a mechanism likely involving a reduction of Ca2+ entry through L-type Ca2+ channels.  相似文献   

12.
1. Previously, we found that contractions in response to receptor-dependent (i.e. a(1)-adrenoceptor agonist phenylephrine) and -independent (i.e. cyclopiazonic acid) stimuli are decreased in rat aorta during late diabetes. The aim of the present study was to further investigate the changes of intracellular Ca(2+) homeostasis in diabetic aortic smooth muscle cells. Functional changes of inositol 1,4,5-trisphosphate (IP(3))- and ryanodine-sensitive Ca(2+) stores of the sarcoplasmic reticulum (SR) were evaluated using Fluo-3 acetoxymethyl ester fluorescence, western blot and organ bath techniques. 2. In aortic smooth muscle cells from diabetic rats, the Ca(2+) release and Ca(2+) influx caused by both 10 mmol/L phenylephrine (depletion of IP(3)-sensitive Ca(2+) stores) and 1 mmol/L ryanodine (depletion of ryanodine-sensitive Ca(2+) stores) were both significantly decreased compared with control. Moreover, protein expression levels of IP(3) (260 kDa) and ryanodine receptors (500 kDa) were reduced by 31.8 +/- 7.7 and 69.2 +/- 8.4%, respectively, in aortas from diabetic rats compared with those from control rats. 3. In diabetic rat aorta, phenylephrine-induced contractility was decreased to approximately two-thirds of that in controls, whereas ryanodine alone did not cause obvious contraction in aortas from either control or diabetic rats. 4. The present results suggest that the hyporeactivity of aortic smooth muscle to vasoconstrictors in diabetes results mainly from changes to the IP(3)-sensitive Ca(2+) release pathway. The SR Ca(2+) signalling pathway plays a crucial role in the development of diabetic vascular complications.  相似文献   

13.
Summary The resting membrane potential of smooth muscle cells of the rabbit portal vein was –51.2 mV. LP-805 (8-tert-butyl-6,7-dihydropyrrolo[3,2-e] 5-methylpyrazolo [1,5-a] pyrimidine-3-carbonitrile) hyperpolarized the membrane to –62.3 mV (10 M) and inhibited the burst spike discharges as measured using the microelectrode method. In dispersed smooth muscle cells, LP-805 (10 M) generated an outward-current with a maximum amplitude of 68 pA at a holding potential of –40 mV in experiments using the voltage-clamp procedure. The reversal potential of the outward current evoked by LP-805 was –82 mV and this value was close to the equilibrium potential for K+ (–80 mV) in the present ionic conditions, suggesting that LP-805 activated the K+ channel. Generation of both the hyperpolarization and the outward c urrent by LP-805 was inhibited by glibenclamide ( 1 M). Using the cell-attached and cell-free patch-clamp (in the presence of GDP) procedures, the maxi-K+ channel current (150 pS) could be recorded in the absence of LP-805; application of LP-805 additionally opened a small conductance K+ channel current (15 pS) without change in the activity of the maxi-K+ channel. The maxi-K+ channel was sensitive to charybdotoxin (0.1 M) and to intracellular Ca2+ ([Ca2+]i) concentration. The 15 pS channel was insensitive to [Ca2+]i and charybdotoxin, but sensitive to intracellular ATP concentration. Glibenclamide (> 1 M) inhibited the 15 pS K+ channel activated by LP-805. These actions of LP-805 on the maxi-K+ and 15 pS K+ channels are the same as those previously observed for nicorandil and pinacidil. Thus, LP-805 is a K+ channel opener with a chemical structure different from those of the known openers. Correspondence to M. Kamouchi at the above address  相似文献   

14.
Biochemical studies have shown that wortmannin is an inhibitor of myosin light chain (MLC) kinase (Nakanishi et al. (1992) J. Biol. Chem. 267: 2157–2163). To investigate the role of MLC kinase in smooth muscle contractions, we examined the effects of wortmannin on isolated smooth muscles of the rat aorta. Wortmannin (1 M) decreased MLC phosphorylation and the amplitude of contractions induced by high K+ (72.7 mM) to a level seen at rest. This occurred without a change in cytosolic Ca2+ levels ([Ca2+]i). In contrast, wortmannin only partially inhibited the sustained contractions induced by phenylephrine (1 M) and prostaglandin F2 (PGF2, 10 M) without a change in the [Ca2+]i. On the other hand, wortmannin (1 or 10 M) reduced the increase in MLC phosphorylation induced by phenylephrine and PGF2 to a level seen at rest. In the absence of external Ca2+, caffeine (20 mM) induced a transient increase in [Ca2+]i and force with an increase in MLC phosphorylation. Wortmanmn completely inhibited the increase in MLC phosphorylation and contraction induced by caffeine without affecting the increase in [Ca2+]i. In the absence of external Ca2+, phenylephrine induced a small transient increase in [Ca2+]i, MLC phosphorylation and generation of force. This was followed by a small sustained contraction without an increase in [Ca2+]i and MLC phosphorylation. Wortmannin (1 M) inhibited the transient phase of the contraction and the increase in MLC phosphorylation without affecting the transient increase in [Ca2+]i nor the sustained contraction. Wortmannin inhibited the Ca2+-induced contraction in permeabilized rat mesenteric artery, although it did not inhibit the Ca2+-independent, ATP-induced contraction in the thiophosphorylated muscle. These results suggest that wortmannin inhibits MLC phosphorylation due to an increase in the entry of Ca2+ or through the release of Ca2+ from the sarcoplasmic reticulum. The results also suggest that the activation of receptors by norepinephrine and PGF2. induces a contraction via a MLC phosphorylation-independent pathway or through a pathway which is dependent on the resting level of MLC phosphorylation. We conclude that wortmannin is a useful tool in studies of the physiological role of MLC kinase.  相似文献   

15.
NO released by myenteric neurons controls the off contraction induced by electrical field stimulation (EFS) in distal esophageal smooth muscle, but in the presence of nitric oxide synthase (NOS) inhibitor, L-NAME, contraction by EFS occurs at the same time. The authors investigated the intracellular signaling pathways related with G protein and ionic channel EFS-induced contraction using cat esophageal muscles. EFS-induced contractions were significantly suppressed by tetrodotoxin (1 µM) and atropine (1 µM). Furthermore, nimodipine inhibited both on and off contractions by EFS in a concentration dependent meaner. The characteristics of ''on'' and ''off'' contraction and the effects of G-proteins, phospholipase, and K+ channel on EFS-induced contraction in smooth muscle were also investigated. Pertussis toxin (PTX, a Gi inactivator) attenuated both EFS-induced contractions. Cholera toxin (CTX, Gs inactivator) also decreased the amplitudes of EFS-induced off and on contractions. However, phospholipase inhibitors did not affect these contractions. Pinacidil (a K+ channel opener) decreased these contractions, and tetraethylammonium (TEA, K+Ca channel blocker) increased them. These results suggest that EFS-induced on and off contractions can be mediated by the activations Gi or Gs proteins, and that L-type Ca2+ channel may be activated by G-protein α subunits. Furthermore, K+Ca-channel involve in the depolarization of esophageal smooth muscle. Further studies are required to characterize the physiological regulation of Ca2+ channel and to investigate the effects of other K+ channels on EFS-induced on and off contractions.  相似文献   

16.
We studied the effects of carmustine (1,3-bis(2-chloroethyl)-1-nitrosourea) on the intracellular Ca(2+) concentration ([Ca(2+)](i)) in PC12 cells using fura-2 fluorescence imaging. Carmustine (100 microM) caused a delayed increase in [Ca(2+)](i) that developed within approximately 3 h. This effect was enhanced in cells that were pretreated with an inhibitor of glutathione (GSH) synthesis, buthionine sulfoximine (BSO, 200 microM, 24 h), and was suppressed in cells that were treated with an antioxidant deferoxamine (50 microM). The carmustine-induced increase in [Ca(2+)](i) was absolutely dependent on the presence of extracellular Ca(2+) and could be inhibited by dihydropyridine blockers of L-type voltage-gated Ca(2+) channels (nimodipine or nitrendipine, 10 microM). The increase in [Ca(2+)](i) was also suppressed in Cl(-)-free solution and in the presence of the Cl(-) channel blockers, indanyloxyacetic acid 94 (IAA-94, 100 microM) and 5-nitro-2-(3-phenylpropylamino)benzoic acid (NPPB, 100 microM). The inhibition was complete when the blockers were applied simultaneously with carmustine and was partial when the blockers were applied after the initial increase in [Ca(2+)](i). We conclude that carmustine induces an influx of extracellular Ca(2+) through L-type Ca(2+) channels and that this effect is mediated by oxidative stress that results from the depletion of GSH following the inhibition by carmustine of glutathione reductase.  相似文献   

17.

Aim:

To investigate the effects of docosahexaenoic acid (DHA) on large-conductance Ca2+-activated K+(BKCa) channels and voltage-dependent K+ (KV) channels in rat coronary artery smooth muscle cells (CASMCs).

Methods:

Rat CASMCs were isolated by an enzyme digestion method. BKCa and KV currents in individual CASMCs were recorded by the patch-clamp technique in a whole-cell configuration at room temperature. Effects of DHA on BKCa and KV channels were observed when it was applied at 10, 20, 30, 40, 50, 60, 70, and 80 μmol/L.

Results:

When DHA concentrations were greater than 10 μmol/L, BKCa currents increased in a dose-dependent manner. At a testing potential of +80 mV, 6.1%±0.3%, 76.5%±3.8%, 120.6%±5.5%, 248.0%±12.3%, 348.7%±17.3%, 374.2%±18.7%, 432.2%±21.6%, and 443.1%±22.1% of BKCa currents were increased at the above concentrations, respectively. The half-effective concentration (EC50) of DHA on BKCa currents was 37.53±1.65 μmol/L. When DHA concentrations were greater than 20 μmol/L, KV currents were gradually blocked by increasing concentrations of DHA. At a testing potential of +50 mV, 0.40%±0.02%, 1.37%±0.06%, 11.80%±0.59%, 26.50%±1.75%, 56.50%±2.89%, 73.30%±3.66%, 79.70%±3.94%, and 78.1%±3.91% of KV currents were blocked at the different concentrations listed above, respectively. The EC50 of DHA on KV currents was 44.20±0.63 μmol/L.

Conclusion:

DHA can activate BKCa channels and block KV channels in rat CASMCs, and the EC50 of DHA for BKCa channels is lower than that for KV channels; these findings indicate that the vasorelaxation effects of DHA on vascular smooth muscle cells are mainly due to its activation of BKCa channels.  相似文献   

18.
Labedipinedilol-A, a novel calcium channel blocker with α/β-adrenoceptor blockade properties, inhibits L-type calcium channels (LTCCs) in rat cerebrovascular smooth muscle cells (CSMCs). We used conventional whole cell patch-clamp electrophysiology to investigate Ba2+ currents (IBa) through LTCCs in rat CSMCs enzymatically dissociated from rat cerebral arteries. Labedipinedilol-A (1, 10 µM) reversibly inhibited IBa in a voltage-dependent manner without modifying the IBa current–voltage relationship. The IBa was also abolished by the LTCC blocker nifedipine (1 µM), but enhanced by the LTCC activator Bay K8644 (100 nM). Labedipinedilol-A shifted the steady-state inactivation curve of IBa to more negative potentials. Additionally, labedipinedilol-A had greater inhibitory activity on IBa holding at − 40 mV than at − 80 mV. This might contribute to labedipinedilol-A's more selective effect on vascular muscles compared to cardiac muscles. The protein kinase C (PKC) activator phorbol 12-myristate 13-acetate (PMA) and norepinephrine-enhanced IBa were also inhibited by labedipinedilol-A. Pretreatment with the PKC inhibitor chelerythrine (5 µM) attenuated labedipinedilol-A-mediated IBa inhibition. However, the Rho kinase inhibitor Y-27632 (30 µM) had little effect on labedipinedilol-A inhibition of IBa. Labedipinedilol-A inhibition of voltage-dependent LTCCs may be, at least in part, due to its modulation of the PKC pathway.  相似文献   

19.
目的 培养、鉴定大鼠腹主动脉平滑肌细胞.方法 采用组织贴块法分离培养大鼠腹主动脉平滑肌细胞,胰蛋白酶消化传代,相差显微镜及即用型SABC免疫组化染色试剂盒进行细胞鉴定.结果 平滑肌细胞呈梭形或长梭形生长,透射电镜可见细胞的胞浆内有很多与细胞纵轴平行的肌丝和与之相连的致密体.高倍镜下可见胞质内大量棕色、与细胞长轴平行的纤...  相似文献   

20.
Depletion of intracellular Ca2+ stores induces the opening of an unknown Ca2+ entry pathway to the cell. We measured the intracellular free-Ca2+ concentration ([Ca2+]i) at different sarcoplasmic reticulum (SR) Ca2+ content in fura-2-loaded smooth muscle cells isolated from bovine tracheas. The absence of Ca2+ in the extracellular medium generated a time-dependent decrement in [Ca2+]i which was proportional to the reduction in the SR-Ca2+ content. This SR-Ca2+ level was indirectly determined by measuring the amount of Ca2+ released by caffeine. Ca2+ restoration at different times after Ca2+-free incubation (2, 4, 6 and 10 min) induced an increment of [Ca2+]i. This increase in [Ca2+]i was considered as Ca2+ entry to the cell. The rate of this entry was slow (~0.3 nM/s) when SR-Ca2+ content was higher than 50% (2 and 4 min in Ca2+-free medium), and significantly (p<0.01) accelerated (>1.0 nM/s) when SR-Ca2+ content was lower than 50% (6 and 10 min in Ca2+-free medium). Thapsigargin significantly induced a higher rate of this Ca2+ entry (p<0.01). Variations in Ca2+ influx after SR-Ca2+ depletion were estimated more directly by a Mn2+ quench approach. Ca2+ restoration to the medium 4 min after Ca2+ removal did not modify the Mn2+ influx. However, when Ca2+ was added after 10 min in Ca2+-free medium, an increment of Mn2+ influx was observed, corroborating an increase in Ca2+ entry. The fast Ca2+ influx was Ni2+ sensitive but was not affected by other known capacitative Ca2+ entry blockers such as La3+, Mg2+, SKF 96365 and 2-APB. It was also not affected by the blockage of L-type Ca2+ channels with methoxyverapamil or by the sustained K+-induced depolarisation. The slow Ca2+ influx was only sensitive to SKF 96365. In conclusion, our results indicate that in bovine airway smooth muscle cells Ca2+ influx after SR-Ca2+ depletion has two rates: A) The slow Ca2+ influx, which occurred in cells with more than 50% of their SR-Ca2+ content, is sensitive to SKF 96365 and appears to be a non-capacitative Ca2+ entry; and B) The fast Ca2+ influx, observed in cells with less than 50% of their SR-Ca2+ content, is probably a capacitative Ca2+ entry and was only Ni2+-sensitive.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号