首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
The process of ozone production in pure oxygen was studied. It was shown how the ozone concentration changes along the discharge gap, both during its generation and decomposition processes. The effect of ozone inlet concentration, power, and gas residence time on ozone concentration was analyzed. It has been shown that concentrated ozone is easily decomposed at very low discharge powers, i.e., when the increase of the average gas temperature in the gap is negligibly small. It was hypothesized that the most intense decomposition takes place in the microdischarge channels, because the process of gas heating in the gap begins inside them.  相似文献   

2.
王小西  李笑艳  王保伟 《化工学报》2022,73(3):1343-1350
二氧化碳既是主要的温室气体之一,也是包含碳和氧的资源,把相对惰性的CO2转化为易于利用的CO是其利用的方法之一。采用介质阻挡微等离子体反应器通过单变量和正交实验探究了反应器参数(放电区长度、放电间距、介质厚度)和工艺参数(输入功率、放电频率和停留时间)对CO2分解为CO的转化率和能量效率的影响规律。研究结果表明,影响CO2转化率的大小顺序依次为:放电间距>放电长度>输入功率≈停留时间>介质厚度>放电频率;输入功率60.0 W、放电频率9.0 kHz和停留时间1.5 s、放电区长度60 mm、放电间距0.5 m、介质厚度1.6 mm时,CO2的转化率为10.6%,能量效率为4.1%。  相似文献   

3.
O2介质阻挡放电微等离子体制备O3   总被引:1,自引:0,他引:1       下载免费PDF全文
介质阻挡放电(DBD)是工业生产臭氧(O3)最有效的方法。研究以O2为原料气采用DBD微等离子体放电制备O3,研究了放电间距、放电长度、放电功率以及停留时间对产生O3的影响。此外,通过向正弦AC等离子体电源中叠加调制脉冲,探讨了脉冲占空比与调制频率对O3生成的影响。结果表明:O3浓度与DBD反应器的放电间距呈负相关,与O2的停留时间呈正相关,放电功率及有效放电长度对O3浓度的影响呈现火山形变化趋势。综合考虑O3浓度及能量产率确定了适宜的参数。与普通正弦交流电源相比,在其基础上叠加脉冲调制电源有利于O3的产生,而能量产率与占空比呈正相关,与调制频率呈负相关,据此确定了合适的占空比与调制频率。  相似文献   

4.
非平衡等离子体消除乙硫醇   总被引:1,自引:0,他引:1  
采用脉冲电晕放电等离子体对乙硫醇进行消除实验,探索了气体流量(停留时间)、气流中水分含量对消除率的影响规律。结果表明,随着气体流量的增大,乙硫醇在反应器内的停留时间减小,能量密度减小,消除率降低;消除率随水分含量的变化并非呈单方向增大或减小,而是存在一个最佳范围,从实验结果来看,水分含量为3.2~3.5 g/m3,消除率明显高于水分含量低于3.2 g/m3或高于3.5 g/m3时的消除率。采用GC-MS、FTIR和SGA94-SO2型单项气体分析仪等仪器对乙硫醇的消除产物进行了分析,主要产物为CO2、H2O和SO2,未检测到有机产物。根据实验数据分析了乙硫醇的反应动力学特征,发现乙硫醇在脉冲电晕等离子体体系中的反应符合一级反应动力学特征,反应速率常数为0.0729 s-1。  相似文献   

5.
针对固体废物堆肥设施氨气污染问题,本文首次运用双介质阻挡放电低温等离子体(DDBD)技术去除模拟堆肥气体中的氨气。考察了输入功率、氨气流速、氨气初始浓度、反应器放电间隙、氧气含量等参数对氨气去除率和低温等离子体系统能量效率的影响,并分析了副产物的生成情况及其影响因子。研究结果表明,氨气去除率与输入功率和氧气含量呈正相关,与氨气流速和氨气初始浓度呈负相关。低温等离子体系统的能量效率与氨气流速、氨气初始浓度、氧气含量均正相关,但随输入功率的增加先升高后降低。研究发现,在所设定的反应条件下,4mm放电间隙反应器的能耗最低,能量效率最高。O3和NOx是DDBD去除氨气的反应副产物,其浓度均与氧气含量呈正相关,均呈现随输入功率的增加先升高后降低的趋势。  相似文献   

6.
The efficiency of ozone generators is determined by many factors. Operating conditions such as feed gas quality and especially cooling conditions are of utmost importance. Cooling of ozone generators is absolutely necessary, since ozone destruction reactions increase exponentially with temperature. The most common way to cool an ozone generator is water flowing in close contact to the electrodes. The heat removal out of the discharge gap depends on different parameters. Electrical input power, cooling water flow conditions, electrode geometry and material properties are some of them. Simultaneously lowering cooling water temperature, applied power density and gap width, leads to a lower gas temperature in the discharge gap and thus to increased ozone production efficiency. Minimizing the temperature difference between the cooling water inlet and outlet improves the ozone production efficiency as well. This measure, however, results in high cooling water flows and requires additional cooling water chilling, resulting in higher operational costs and capital expenses. Cooling associated costs rise disproportionally with increasing cooling water flow. Simultaneously, energy consumption of ozone generators decreases as the average cooling water temperature goes down. As a result, there exists an optimum between the operational and capital expenses for the combination of ozone generator and cooling water system related expenses, offering significant cost savings for the customer.  相似文献   

7.
An attempt to explain the phenomenon of the effect of electrode rotation on the ozone generation process is presented. A discharge photography method was applied and computer analysis method was used to find discharge differences between electrode rotational and non-rotational cases. The research presented shows that with electrode rotation the discharge was more uniform and the ozone generation efficiency increased about 15% compared to an ozonizer with a non-rotating electrode. In addition, during the research, the most suitable electrode rotational speed for the ozone generation process was estimated.  相似文献   

8.
The parameters, which determine the performance of ozone generators, are efficiency and maximum ozone concentration. The efficiency from oxygen has been found to be nearly independent on the kind of barrier discharge arrangement (volume, surface, coplanar), while the ozone concentration saturation level depends on the specific design of the generator. These phenomena are explained with features of the discharge process and the properties of chemical reactions, respectively. The importance of a limit in the energy density of the discharge is highlighted.  相似文献   

9.
By using mixing intensification involving high solids concentration as a means to achieve process intensification for the mineral process industry is discussed here. Improving agitator energy efficiency is essential for operating at high solids concentrations. It is shown that improved agitator energy efficiency can be achieved by removing baffles and using higher power number impellers at high solids loadings. Power consumption (50–80%) reductions were demonstrated in the experiments. It is also suggested that slurry stratification in tanks can be used to boost either solids residence time or slurry mass flow. Basic equations related to solids residence time and solids throughput are presented for guidance toward minerals process intensification. An example on doubling throughput via intensification is presented. © 2010 American Institute of Chemical Engineers AIChE J, 2011  相似文献   

10.
研究了新型多棱榫状转子的结构、混炼原理和工艺特性。结果表明,多棱榫状转子混炼能力强、分散混合效果好、混炼能耗低。其混炼功率随转速、加料量加大而增加,随卸料门开启度增大而减小。混炼时加料量与物料停留时间成反比,转速对物料停留时间影响不大。  相似文献   

11.
In this paper an ozone generation system that uses square bipolar pulses at 1900 Hz frequency (carrier signal) modulated with low frequency square wave is presented. The optimization of the carrier was done by sweeping the frequency from 500 to 2400 Hz and the duty cycle from 20 to 100 %, obtaining the best results at 1900 Hz and 80 % respectively. The experiment was done using a corona discharge generator with glass dielectric, 2 mm gap, water‐cooling at 26 °C and oxygen as the feed gas. Different levels of ozone production were obtained by changing the duty cycle of the modulator signal. The modulator signal works on a discrete way with whole numbers of pulses. The priority of the pulse polarity can be set so the beginning of the pulses may be either positive or negative. A dead time between pulse trains is always present with a minimum value of 10% of the modulator signal. The dead time contributes to the generator cooling because no energy is applied.

A comparative study between the proposed system and a 60 Hz traditional source generator shows an increase in the ozone concentration and ozone production rate, as well as a reduction of the voltage required to produce the corona discharge by using a pulse train at medium frequency.  相似文献   


12.
Dielectric barrier discharge (DBD) reactors used as ozone generators are well known today and widely used for water treatment and air disinfection. The purpose of this article is to propose an experimental procedure based on the response surface modeling in order to optimize the geometrical dimensions of the cylindrical shape ozone generator, i.e., the discharge gap and the electrodes length. Because an effective ozone generator is expected to give high ozone concentration with a minimum of power requirements, the applied high voltage was associated with the geometrical parameters to carry out a composite centered faces design. Obtained results indicate that for an efficient ozone generator, length of the electrodes needs to be optimized while the discharge gap should be minimized.  相似文献   

13.
In order determine the potential of coplanar discharge arrangements with short electrode distances for the production of ozone, a numerical model of the discharge behavior has been developed. The temporal and spatial distributions of the discharge parameters e.g. those of the field strength, the densities of the charged particles in the gas region and on the dielectric surface and that of the energy release reveal that the ozone production results from the electron phase of the discharge. Quantitative data of the productivity and efficiency of the ozone yield in a certain system are presented, which are in agreement with experimental results.  相似文献   

14.
The catalytic effect of dielectric packings inside the discharge gap on the yield of ozone generation was studied under silent discharge conditions. Porous silica of developed internal surface and quartz glass grains were used as the packings. In the presence of coarser grains of both materials, higher ozone concentrations and higher energy efficiency were observed than with the finer ones. Porous silica was found to be more effective than quartz glass. The higher activity of silica arises from the surface structure rather than from its porosity.  相似文献   

15.
In this paper, combining hybrid discharge with pellet alumina catalyst is used for ozone generation. The hybrid discharge including corona discharge (CD), surface discharge (SD) and dielectric barrier discharge (DBD) may happen in the device. Factors that affect the ozone production efficiency and concentration are studied, such as energy density, power, gas flow rate, frequency, peak voltage and catalysts.  相似文献   

16.
Ozone production has been investigated using an atmospheric pressure dielectric barrier discharge in pure O2 at room temperature with and without ultrasonic irradiation. It was driven at a frequency of either 15 kHz or ~40 kHz. The ozone production was highly dependent on the O2 flow rate and the discharge power. Furthermore, powerful ultrasonic irradiation at a fundamental frequency of ~30 kHz with the sound pressure level of ~150 dB into the discharge can improve the ozone production efficiency, particularly when operated at the frequency of 15 kHz at the flow rate of 15 L/min.  相似文献   

17.
Abstract

The problem of the efficiency of energy transfer from a capacitive energy storage device to the region of nanoparticle synthesis in a spark discharge has been considered. Using the method for measuring pulsed voltages at short gas-discharge gaps developed by the authors, the time dependence of the voltage across the active resistance of the gaps was studied for copper and titanium electrodes in different discharge regimes. For the first time, stepwise changes were observed in the time dependence of the voltage at the moments of changing the current direction. The conclusion was made about the predominant release of electrical energy in the near-electrode regions of the discharge gap, where nanoparticle synthesis occurs. For a spark discharge, the voltage across the active resistance of the interelectrode gap weakly depends on the amplitude of the flowing current and, for metal electrodes, is of the order of several tens of volts. A formula is proposed for determining the energy transferred to the discharge gap. The efficiency of energy transfer to the discharge gaps increases with increasing the quality of the discharge circuit with the use of several series-connected interelectrode gaps (in our case, from 30 to 60%), with a decrease in the capacitance or initial voltage at the capacitor.

Copyright © 2019 American Association for Aerosol Research  相似文献   

18.
The hydrogen fuel cell is a promising option as a future energy resource; however, the nature of the gas is such that the conversion process of other fuels to hydrogen on board is necessary. Among the raw fuel resources, methane could be the best candidate as it is plentiful. In this experiment, the possibility of producing hydrogen with less carbon formation from methane by a dielectric barrier discharge (DBD) was investigated. Without the addition of a catalyst, the formation of hydrogen reached between 30% and 35% at methane residence time of 0.22 min and supplied powers in the range of 60-130 W. The hydrogen selectivity increased at higher supplied power, but the process efficiency, defined as a ratio of the produced hydrogen to the supplied power, decreased slightly. In order to boost the hydrogen production with less carbon formation, a mixed oxide catalyst of zinc and chromium was added to the reactor. It was shown that the production of hydrogen was ca. 40% higher than the non-catalytic plasma process.  相似文献   

19.
Surface discharge (SD) arrangements are used in commercial ozone generators like conventional arrangements with a gas gap. While in oxygen the characteristics of the ozone production are comparable in both arrangements, the efficiency of ozone production from air is significant lower in SDs. From experimental results it is believed that high temperatures in the discharge cause this “poisoning” of air-fed SD ozone generators. To clarify this, the ozone synthesis from air near atmospheric pressure is investigated with the help of a two-dimensional self-consistent modeling of the discharge development and the relevant plasma-chemical reactions. The temperature in the discharge area is determined from energy densities of electrons and ions and included in the relevant chemical reaction system. The results show a significant temperature increase in front of the metallic surface electrodes combined with an increased concentration of nitrogen oxides.  相似文献   

20.
An experimental investigation was carried out to study the mixing performance and flow behavior in a continuous powder mixer for a typical pharmaceutical mixture. Blender performance, characterized by the relative standard deviation (RSD) of composition of blend samples taken at the blender discharge and by the variance reduction ratio (VRR) of the blender, was measured as a function of impeller rotation rate, flow rate and blade configuration. The flow behavior in the continuous mixer was characterized using the residence time distribution (RTD) and powder hold-up measurements. To quantify the strain applied to the powder in the blender, the number of blade passes experienced by the powder in the blender was calculated using the residence time measurements. The relationship between different experimental parameters and mean residence time and mean centered variance was examined. The mixing performance was largely dominated by the material properties of the mixture, which had a larger effect than the ingredient flow rate variability contributed by the feeders. Holdup was strongly dependent on impeller rotation rate; as impeller rotation rate increased, holdup (and therefore, residence time) decreased sharply. As a result, intermediate rotation rates showed the best mixing performance. Blade configuration affected performance as well; blade patterns where some of the blades push the powder backwards improved the mixing performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号