首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The demand for a new generation of flexible, portable, and high‐capacity power sources increases rapidly with the development of advanced wearable electronic devices. Here we report a simple process for large‐scale fabrication of self‐standing composite film electrodes composed of NiCo2O4@carbon nanotube (CNT) for supercapacitors. Among all composite electrodes prepared, the one fired in air displays the best electrochemical behavior, achieving a specific capacitance of 1,590 F g?1 at 0.5 A g?1 while maintaining excellent stability. The NiCo2O4@CNT/CNT film electrodes are fabricated via stacking NiCo2O4@CNT and CNT alternately through vacuum filtration. Lightweight, flexible, and self‐standing film electrodes (≈24.3 µm thick) exhibit high volumetric capacitance of 873 F cm?3 (with an areal mass of 2.5 mg cm?2) at 0.5 A g?1. An all‐solid‐state asymmetric supercapacitor consists of a composite film electrode and a treated carbon cloth electrode has not only high energy density (≈27.6 Wh kg?1) at 0.55 kW kg?1 (including the weight of the two electrodes) but also excellent cycling stability (retaining ≈95% of the initial capacitance after 5000 cycles), demonstrating the potential for practical application in wearable devices.  相似文献   

2.
A facile two‐step method is developed for large‐scale growth of ultrathin mesoporous nickel cobaltite (NiCo2O4) nanosheets on conductive nickel foam with robust adhesion as a high‐performance electrode for electrochemical capacitors. The synthesis involves the co‐electrodeposition of a bimetallic (Ni, Co) hydroxide precursor on a Ni foam support and subsequent thermal transformation to spinel mesoporous NiCo2O4. The as‐prepared ultrathin NiCo2O4 nanosheets with the thickness of a few nanometers possess many interparticle mesopores with a size range from 2 to 5 nm. The nickel foam supported ultrathin mesoporous NiCo2O4 nanosheets promise fast electron and ion transport, large electroactive surface area, and excellent structural stability. As a result, superior pseudocapacitive performance is achieved with an ultrahigh specific capacitance of 1450 F g?1, even at a very high current density of 20 A g?1, and excellent cycling performance at high rates, suggesting its promising application as an efficient electrode for electrochemical capacitors.  相似文献   

3.
Batteries and supercapacitors are critical devices for electrical energy storage with wide applications from portable electronics to transportation and grid. However, rechargeable batteries are typically limited in power density, while supercapacitors suffer low energy density. Here, a novel symmetric Na‐ion pseudocapacitor with a power density exceeding 5.4 kW kg?1 at 11.7 A g?1, a cycling life retention of 64.5% after 10 000 cycles at 1.17 A g?1, and an energy density of 26 Wh kg?1 at 0.585 A g?1 is reported. Such a device operates on redox reactions occurring on both electrodes with an identical active material, viz., Na3V2(PO4)3 encapsulated inside nanoporous carbon. This device, in a full‐cell scale utilizing highly reversible and high‐rate Na‐ion intercalational pseudocapacitance, can bridge the performance gap between batteries and supercapacitors. The characteristics of the device and the potentially low‐cost production make it attractive for hybrid electric vehicles and low‐maintenance energy storage systems.  相似文献   

4.
2D materials are ideal for constructing flexible electrochemical energy storage devices due to their great advantages of flexibility, thinness, and transparency. Here, a simple one‐step hydrothermal process is proposed for the synthesis of nickel–cobalt phosphate 2D nanosheets, and the structural influence on the pseudocapacitive performance of the obtained nickel–cobalt phosphate is investigated via electrochemical measurement. It is found that the ultrathin nickel–cobalt phosphate 2D nanosheets with an Ni/Co ratio of 4:5 show the best electrochemical performance for energy storage, and the maximum specific capacitance up to 1132.5 F g?1. More importantly, an aqueous and solid‐state flexible electrochemical energy storage device has been assembled. The aqueous device shows a high energy density of 32.5 Wh kg?1 at a power density of 0.6 kW kg?1, and the solid‐state device shows a high energy density of 35.8 Wh kg?1 at a power density of 0.7 kW kg?1. These excellent performances confirm that the nickel–cobalt phosphate 2D nanosheets are promising materials for applications in electrochemical energy storage devices.  相似文献   

5.
All‐solid‐state flexible asymmetric supercapacitors (ASCs) are developed by utilization of graphene nanoribbon (GNR)/Co0.85Se composites as the positive electrode, GNR/Bi2Se3 composites as the negative electrode, and polymer‐grafted‐graphene oxide membranes as solid‐state electrolytes. Both GNR/Co0.85Se and GNR/Bi2Se3 composite electrodes are developed by a facile one‐step hydrothermal growth method from graphene oxide nanoribbons as the nucleation framework. The GNR/Co0.85Se composite electrode exhibits a specific capacity of 76.4 mAh g?1 at a current density of 1 A g?1 and the GNR/Bi2Se3 composite electrode exhibits a specific capacity of 100.2 mAh g?1 at a current density of 0.5 A g?1. Moreover, the stretchable membrane solid‐state electrolytes exhibit superior ionic conductivity of 108.7 mS cm?1. As a result, the flexible ASCs demonstrate an operating voltage of 1.6 V, an energy density of 30.9 Wh kg?1 at the power density of 559 W kg?1, and excellent cycling stability with 89% capacitance retention after 5000 cycles. All these results demonstrate that this study provides a simple, scalable, and efficient approach to fabricate high performance flexible all‐solid‐state ASCs for energy storage.  相似文献   

6.
A facile and novel one‐step method of growing nickel‐cobalt layered double hydroxide (Ni‐Co LDH) hybrid films with ultrathin nanosheets and porous nanostructures on nickel foam is presented using cetyltrimethylammonium bromide as nanostructure growth assisting agent but without any adscititious alkali sources and oxidants. As pseudocapacitors, the as‐obtained Ni‐Co LDH hybrid film‐based electrodes display a significantly enhanced specific capacitance (2682 F g?1 at 3 A g?1, based on active materials) and energy density (77.3 Wh kg?1 at 623 W kg?1), compared to most previously reported electrodes based on nickel‐cobalt oxides/hydroxides. Moreover, the asymmetric supercapacitor, with the Ni‐Co LDH hybrid film as the positive electrode material and porous freeze‐dried reduced graphene oxide (RGO) as the negative electrode material, exhibits an ultrahigh energy density (188 Wh kg?1) at an average power density of 1499 W kg?1 based on the mass of active material, which greatly exceeds the energy densities of most previously reported nickel or cobalt oxide/hydroxide‐based asymmetric supercapacitors.  相似文献   

7.
Binary metal oxides (such as NiCo2O4) are regarded as attractive electrode materials for advanced energy storage devices since they offer more electrochemical activity and higher capacity than monometal oxide. However, the volume expansion and low electronic conductivity are the main bottleneck seriously hindering their application. To overcome these barriers, a novel strategy that introduces a bimetallic oxynitride layer (NiCoON) with oxygen vacancy to the surface of NiCo2O4 nanowires as an anode for Li‐ion capacitors (LICs) is proposed. The oxygen vacancy on the surface and the modulation of multiple valence states are investigated by the electron paramagnetic resonance, X‐ray photoelectron spectroscopy characterization, and first‐principles calculation. Benefiting from the merits of substantially improved electrical conductivity and increased concentration of active sites, the optimized NiCoON electrode delivers remarkable capacity (1855 mAh g?1 at 0.2 A g?1) and rate performance. The LIC device assembled by NiCoON anodes and N‐doped carbon nanowire cathodes delivers excellent rate capability, high energy density (148.5 Wh kg?1), and outstanding power density (30 kW kg?1). This study provides a new pathway for developing bimetallic oxides with an improved performance in electrochemical energy storage, conversion fields, and beyond.  相似文献   

8.
Hydrous ruthenium oxide (RuO2)/graphene sheet composites (ROGSCs) with different loadings of Ru are prepared by combining sol–gel and low‐temperature annealing processes. The graphene sheets (GSs) are well‐separated by fine RuO2 particles (5–20 nm) and, simultaneously, the RuO2 particles are anchored by the richly oxygen‐containing functional groups of reduced, chemically exfoliated GSs onto their surface. Benefits from the combined advantages of GSs and RuO2 in such a unique structure are that the ROGSC‐based supercapacitors exhibit high specific capacitance (~570 F g?1 for 38.3 wt% Ru loading), enhanced rate capability, excellent electrochemical stability (~97.9% retention after 1000 cycles), and high energy density (20.1 Wh kg?1) at low operation rate (100 mA g?1) or high power density (10000 W kg?1) at a reasonable energy density (4.3 Wh kg?1). Interestingly, the total specific capacitance of ROGSCs is higher than the sum of specific capacitances of pure GSs and pure RuO2 in their relative ratios, which is indicative of a positive synergistic effect of GSs and RuO2 on the improvement of electrochemical performance. These findings demonstrate the importance and great potential of graphene‐based composites in the development of high‐performance energy‐storage systems.  相似文献   

9.
NiO nanoflakes are created with a simple hydrothermal method on 3D (three‐dimensional) graphene scaffolds grown on Ni foams by microwave plasma enhanced chemical vapor deposition (MPCVD). Such as‐grown NiO‐3D graphene hierarchical composites are then applied as monolithic electrodes for a pseudo‐supercapacitor application without needing binders or metal‐based current collectors. Electrochemical measurements impart that the hierarchical NiO‐3D graphene composite delivers a high specific capacitance of ≈1829 F g?1 at a current density of 3 A g?1 (the theoretical capacitance of NiO is 2584 F g?1). Furthermore, a full‐cell is realized with an energy density of 138 Wh kg?1 at a power density of 5.25 kW kg?1, which is much superior to commercial ones as well as reported devices in asymmetric capacitors of NiO. More attractively, this asymmetric supercapacitor exhibits capacitance retention of 85% after 5000 cycles relative to the initial value of the 1st cycle.  相似文献   

10.
This work presents a design of sandwich MoO3/C hybrid nanostructure via calcination of the dodecylamine‐intercalated layered α‐MoO3, leading to the in situ production of the interlayered graphene layer. The sample with a high degree of graphitization of graphene layer and more interlayered void region exhibits the most outstanding energy storage performance. The obtained material is capable of delivering a high specific capacitance of 331 F g?1 at a current density of 1 A g?1 and retained 71% capacitance at 10 A g?1. In addition, nearly no discharge capacity decay between 1000 and 10 000 continuous charge–discharge cycles is observed at a high current density of 10 A g?1, indicating an excellent specific capacitance retention ability. The exceptional rate capability endows the electrode with a high energy density of 41.2 W h kg?1 and a high power density of 12.0 kW kg?1 simultaneously. The excellent performance is attributed to the sandwich hybrid nanostructure of MoO3/C with broad ion diffusion pathway, low charge‐transfer resistance, and robust structure at high current density for long‐time cycling. The present work provides an insight into the fabrication of novel electrode materials with both enhanced rate capability and cyclability for potential use in supercapacitor and other energy storage devices.  相似文献   

11.
Engineering core-shell materials with rationally designed architectures and components is an effective strategy to fulfill the high-performance requirements of supercapacitors. Herein, hierarchical candied-haws-like NiCo2S4@NiCo(HCO3)2 core-shell heterostructure (NiCo2S4@HCs) is designed with NiCo(HCO3)2 polyhedrons being tightly strung by cross-linked NiCo2S4 nanowires. This rational design not only creates more electroactive sites but also suppresses the volume expansion during the charge–discharge processes. Meanwhile, density functional theory calculations ascertain that the formation of NiCo2S4@HCs heterostructure simultaneously facilitates OH adsorption/desorption and accelerates electron transfer within the electrode, boosting fast and efficient redox reactions. Ex situ X-ray diffraction and Raman measurements reveal that gradual phase transformations from NiCo(HCO3)2 to NiCo(OH)2CO3 and then to highly-active NiCoOOH take place during the cycles. Therefore, NiCo2S4@HCs demonstrates an ultrahigh capacitance of 3178.2 F g−1 at 1 A g−1 and a remarkable rate capability of 2179.3 F g−1 at 30 A g−1. In addition, the asymmetric supercapacitor NiCo2S4@HCs//AC exhibits a high energy density of 69.6 W h kg−1 at the power density of 847 W kg−1 and excellent cycling stability with 90.2% retained capacitance after 10 000 cycles. Therefore, this novel structural design has effectively manipulated the interface charge states and guaranteed the structural integrity of electrode materials to achieve superior electrochemical performances.  相似文献   

12.
The sluggish kinetics of Faradaic reactions in bulk electrodes is a significant obstacle to achieve high energy and power density in energy storage devices. Herein, a composite of LiFePO4 particles trapped in fast bifunctional conductor rGO&C@Li3V2(PO4)3 nanosheets is prepared through an in situ competitive redox reaction. The composite exhibits extraordinary rate capability (71 mAh g?1 at 15 A g?1) and remarkable cycling stability (0.03% decay per cycle over 1000 cycles at 10 A g?1). Improved extrinsic pseudocapacitive contribution is the origin of fast kinetics, which endows this composite with high energy and power density, since the unique 2D nanosheets and embedded ultrafine LiFePO4 nanoparticles can shorten the ion and electron diffusion length. Even applied to Li‐ion hybrid capacitors, the obtained devices still achieve high power density of 3.36 kW kg?1 along with high energy density up to 77.8 Wh kg?1. Density functional theory computations also validate that the remarkable rate performance is facilitated by the desirable ionic and electronic conductivity of the composite.  相似文献   

13.
Flexible supercapacitors with high power density, flexibility, and durability have shown enormous potential for smart electronics. Here, a continuous graphitic carbon nitride polyhedron assembly for flexible supercapacitor that is prepared by pyrolysis of carbon nanotubes wired zeolitic imidazolate framework‐8 (ZIF‐8) composites under nitrogen is reported. It exhibits a high specific capacitance of 426 F g?1 at current density of 1 A g?1 in 1 m H2SO4 and excellent stability over 10 000 cycles. The remarkable performance results from the continuous hierarchical structure with average pore size of 2.5 nm, high nitrogen‐doping level (17.82%), and large specific surface area (920 m2 g?1). Furthermore, a flexible supercapacitor is developed by constructing the assembly with interpenetrating polymer network electrolyte. Stemming from the synergistic effect of high‐performance electrode and highly ion‐conductive electrolyte, superior energy density of 59.40 Wh kg?1 at 1 A g?1 is achieved. The device maintains a stable energy supply under cyclic deformations, showing wide application in flexible and even wearable conditions. The work paves a new way for designing pliable electrode with excellent electronic and mechanic property for long‐lived flexible energy storage devices.  相似文献   

14.
Nitrogen‐doped carbon aerogels (NCAs) have received great attention for a wide range of applications, from thermal electronics to waste water purification, heavy metal or gas adsorption, energy storage, and catalyst supports. Herein NCAs are developed via the synthesis of a Schiff‐base porous organic polymer aerogel followed by pyrolysis. By controlling the pyrolysis temperature, the polymer aerogel can be simply converted into porous NCAs with a low bulk density (5 mg cm?3), high surface area (2356 m2 g?1), and high bulk porosity (70%). The NCAs containing 1.8–5.3 wt% N atoms exhibit remarkable CO2 uptake capacities (6.1 mmol g?1 at 273 K and 1 bar, 33.1 mmol g?1 at 323 K and 30 bar) and high ideal adsorption solution theory selectivity (47.8) at ambient pressure. Supercapacitors fabricated with NCAs display high specific capacitance (300 F g?1 at 0.5 A g?1), fast rate (charge to 221 F g?1 within only 17 s), and high stability (retained >98% capacity after 5000 cycles). Asymmetric supercapacitors assembled with NCAs also show high energy density and power density with maximal values of 30.5 Wh kg?1 and 7088 W kg?1, respectively. The outstanding CO2 uptake and energy storage abilities are attributed to the ultra‐high surface area, N‐doping, conductivity, and rigidity of NCA frameworks.  相似文献   

15.
Graphene derivatives are promising candidates as electrode materials in supercapacitor cells, therefore, functionalization strategies are pursued to improve their performance. A scalable approach is reported for preparing a covalently and homogenously functionalized graphene with iron tetraaminophthalocyanine (FePc‐NH2) with a high degree of functionalization. This is achieved by exploiting fluorographene's reactivity with the diethyl bromomalonate, producing graphene‐dicarboxylic acid after hydrolysis, which is conjugated with FePc‐NH2. The material exhibits an ultrahigh gravimetric specific capacitance of 960 F g?1 at 1 A g?1 and zero losses upon charging–discharging cycling. The energy density of 59 Wh kg?1 is eminent among supercapacitors operating in aqueous electrolytes with graphene‐based electrode materials. This is attributed to the structural and functional synergy of the covalently bound components, giving rise to a zwitterionic surface with extensive π–π stacking, but not graphene restacking, all being very beneficial for charge and ionic transport. The safety of the proposed system, owing to the benign Na2SO4 aqueous electrolyte, the high capacitance, energy density, and potential of preparing the electrode material on a large‐scale and at low cost make the reported strategy very attractive for development of supercapacitors based on the covalent attachment of suitable molecules onto graphene toward high‐synergy hybrids.  相似文献   

16.
Nickel oxide (NiO) nanoparticles are distributed uniformly in the vertically aligned carbon nanotube arrays (VACNTs) with millimeter thickness by an effective supercritical carbon dioxide‐assisted method. The as‐prepared VACNT/NiO hybrid structures are used as electrodes without binders and conducting additives for supercapacitor applications. Due to the synergetic effects of NiO and VACNTs with nanoporous structures and parallel 1D conductive paths for electrons, the supercapacitors exhibit a high capacitance of 1088.44 F g?1. Furthermore, an asymmetric supercapacitor is assembled using the as‐synthesized VACNTs/NiO hybrids as the positive electrode and the VACNTs as the negative electrode. Remarkably, the energy density of the asymmetric supercapacitor is as high as 90.9 Wh kg?1 at 3.2 kW kg?1 and the maximum power density reaches 25.6 kW kg?1 at 24.9 Wh kg?1, which are superior to those of the NiO or VACNTs‐based asymmetric supercapacitors. More importantly, the asymmetric supercapacitors exhibit capacitance retention of 87.1% after 2000 cycles at 5 A g?1. The work provides a novel approach in decorating highly dense and long VACNTs with active materials, which are promising electrodes for supercapacitors with ultrahigh power density and energy density.  相似文献   

17.
2D MXenes have been widely applied in the field of electrochemical energy storage owning to their high electrical conductivity and large redox‐active surface area. However, electrodes made from multilayered MXene with small interlayer spacing exhibit sluggish kinetics with low capacity for sodium‐ion storage. Herein, Ti3C2 MXene with expanded and engineered interlayer spacing for excellent storage capability is demonstrated. After cetyltrimethylammonium bromide pretreatment, S atoms are successfully intercalated into the interlayer of Ti3C2 to form a desirable interlayer‐expanded structure via Ti? S bonding, while pristine Ti3C2 is hardly to be intercalated. When the annealing temperature is 450 °C, the S atoms intercalated Ti3C2 (CT‐S@Ti3C2‐450) electrode delivers the improved Na‐ion capacity of 550 mAh g?1 at 0.1 A g?1 (≈120 mAh g?1 at 15 A g?1, the best MXene‐based Na+‐storage rate performance reported so far), and excellent cycling stability over 5000 cycles at 10 A g?1 by enhanced pseudocapacitance. The enhanced sodium‐ion storage capability has also been verified by theoretical calculations and kinetic analysis. Coupling the CT‐S@Ti3C2‐450 anode with commercial AC cathode, the assembled Na+ capacitor delivers high energy density (263.2 Wh kg?1) under high power density (8240 W kg?1), and outstanding cycling performance.  相似文献   

18.
Well‐controlled core–shell hierarchical nanostructures based on oxyfluoride and hydroxide are for the first time rationally designed and synthesized via a simple solvothermal and chemical precipitation route, in which FeOF nanorod acts as core and porous Ni(OH)2 nanosheets as shell. When evaluated as electrodes for supercapacitors, a high specific capacitance of 1452 F g?1 can be obtained at a current density of 1 A g?1. Even as the current density increases to 10 A g?1, the core–shell hybrid still reserves a noticeable capacitance of 1060 F g?1, showing an excellent rate capacity. Furthermore, all‐solid‐state flexible asymmetric supercapacitor based on the FeOF/Ni(OH)2 hybrid as a positive electrode and activated carbon as a negative electrode shows high power density, high energy density, and long cycling lifespan. The excellent electrochemical performance of the FeOF/Ni(OH)2 core–shell hybrid is ascribed to the unique microstructure and synergistic effects. FeOF nanorod from FeF3 by partial substitution of fluorine with oxygen behaves as a low intrinsic resistance, thus facilitating charge transfer processes. While the hierarchical Ni(OH)2 nanosheets with large surface area provide enough active sites for redox chemical reactions, leading to greatly enhanced electrochemical activity. The well‐controllable oxyfluoride/hydroxide hybrid is inspiring, opening up a new way to design new electrodes for next‐generation all‐solid‐state supercapacitors.  相似文献   

19.
High capacity electrodes based on a Si composite anode and a layered composite oxide cathode, Ni‐rich Li[Ni0.75Co0.1Mn0.15]O2, are evaluated and combined to fabricate a high energy lithium ion battery. The Si composite anode, Si/C‐IWGS (internally wired with graphene sheets), is prepared by a scalable sol–gel process. The Si/C‐IWGS anode delivers a high capacity of >800 mAh g?1 with an excellent cycling stability of up to 200 cycles, mainly due to the small amount of graphene (~6 wt%). The cathode (Li[Ni0.75Co0.1Mn0.15]O2) is structurally optimized (Ni‐rich core and a Ni‐depleted shell with a continuous concentration gradient between the core and shell, i.e., a full concentration gradient, FCG, cathode) so as to deliver a high capacity (>200 mAh g?1) with excellent stability at high voltage (~4.3 V). A novel lithium ion battery system based on the Si/C‐IWGS anode and FCG cathode successfully demonstrates a high energy density (240 Wh kg?1 at least) as well as an unprecedented excellent cycling stability of up to 750 cycles between 2.7 and 4.2 V at 1C. As a result, the novel battery system is an attractive candidate for energy storage applications demanding a high energy density and long cycle life.  相似文献   

20.
Hybrid metal–organic frameworks (MOFs) demonstrate great promise as ideal electrode materials for energy‐related applications. Herein, a well‐organized interleaved composite of graphene‐like nanosheets embedded with MnO2 nanoparticles (MnO2@C‐NS) using a manganese‐based MOF and employed as a promising anode material for Li‐ion hybrid capacitor (LIHC) is engineered. This unique hybrid architecture shows intriguing electrochemical properties including high reversible specific capacity 1054 mAh g?1 (close to the theoretical capacity of MnO2, 1232 mAh g?1) at 0.1 A g?1 with remarkable rate capability and cyclic stability (90% over 1000 cycles). Such a remarkable performance may be assigned to the hierarchical porous ultrathin carbon nanosheets and tightly attached MnO2 nanoparticles, which provide structural stability and low contact resistance during repetitive lithiation/delithiation processes. Moreover, a novel LIHC is assembled using a MnO2@C‐NS anode and MOF derived ultrathin nanoporous carbon nanosheets (derived from other potassium‐based MOFs) cathode materials. The LIHC full‐cell delivers an ultrahigh specific energy of 166 Wh kg?1 at 550 W kg?1 and maintained to 49.2 Wh kg?1 even at high specific power of 3.5 kW kg?1 as well as long cycling stability (91% over 5000 cycles). This work opens new opportunities for designing advanced MOF derived electrodes for next‐generation energy storage devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号