首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
A class of thin, lightweight, flexible, near‐field communication (NFC) devices with ultraminiaturized format is introduced, and systematic investigations of the mechanics, radio frequency characteristics, and materials aspects associated with their optimized construction are presented. These systems allow advantages in mechanical strength, placement versatility, and minimized interfacial stresses compared to other NFC technologies and wearable electronics. Detailed experimental studies and theoretical modeling of the mechanical and electromagnetic properties of these systems establish understanding of the key design considerations. These concepts can apply to many other types of wireless communication systems including biosensors and electronic implants.  相似文献   

3.
Bioelectronics, which can provide electrical impulses to precisely modulate the body's neural circuits, spark great interests of industry and academia. Yet the technologies to power and manipulate these devices, such as wireless powering and remote manipulation, remain challenging. Here, by investigating the pyroelectric performances of poly(vinylidene difluoride) (PVDF) and its remote‐manipulation ability under near‐infrared‐ray (nIR) irradiation, a flexible battery‐less implantable device is proposed, constructed by laminated graphene–PVDF–graphene sandwiches, which can be wirelessly powered and supply regulatable electrical pulses for nerve stimulation by nIR irradiation. The flexible and compact device (20 mm × 20 mm in area, 0.2 mm in thickness) can generate electrical pulses with controllable amplitude and width, and shows an excellent ability to stimulate nerves, i.e., sciatic nerve of a frog and a rat heart, by remote control. The flexible and remote‐manipulative battery‐less device should find uses in the design and fabrication of bioelectronics‐related applications.  相似文献   

4.
Wearable human‐interactive devices are advanced technologies that will improve the comfort, convenience, and security of humans, and have a wide range of applications from robotics to clinical health monitoring. In this study, a fully printed wearable human‐interactive device called a “smart bandage” is proposed as the first proof of concept. The device incorporates touch and temperature sensors to monitor health, a drug‐delivery system to improve health, and a wireless coil to detect touch. The sensors, microelectromechanical systems (MEMS) structure, and wireless coil are monolithically integrated onto flexible substrates. A smart bandage is demonstrated on a human arm. These types of wearable human‐interactive devices represent a promising platform not only for interactive devices, but also for flexible MEMS technology.  相似文献   

5.
6.
7.
8.
This work demonstrates a stretchable and flexible lactate/O2 biofuel cell (BFC) using buckypaper (BP) composed of multi‐walled carbon nanotubes as the electrode material. Free‐standing BP, functionalized with a pyrene‐polynorbornene homopolymer, is fabricated as the immobilization matrix for lactate oxidase (LOx) at the anode and bilirubin oxidase at the cathode. This biofuel cell delivers an open circuit voltage of 0.74 V and a high‐power density of 520 µW cm?2. The functionalized BP electrodes are assembled onto a stretchable screen‐printed current collector with an “island–bridge” configuration, which ensures conformal contact between the wearable BFC and the human body and endows the BFC with excellent performance stability under stretching condition. When applied to the arm of the volunteer, the BFC can generate a maximum power of 450 µW. When connected with a voltage booster, the on‐body BFC is able to power a light emitting diode under both pulse discharge and continuous discharge modes during exercise. This demonstrates the promising potential of the flexible BP‐based BFC as a self‐sustained power source for next‐generation wearable electronics.  相似文献   

9.
Graphene is regarded as the ultimate material for future flexible, high‐performance, and wearable electronics. Herein, a novel, robust, all‐green, highly reliable (yield ≥ 99%), and upscalable technology is reported for wearable applications comprising reduced graphene oxide (rGO) as the electroactive component in liquid‐gated transistors (LGTs). rGO is a formidable material for future flexible and wearable applications due to its easy processability, excellent surface reactivity, and large‐area coverage. A novel protocol is established toward the high‐yield fabrication of flexible rGO LGTs combining high robustness (>1.5 h of continuous operation) with state‐of‐the‐art performances, being similar to those of their rigid counterparts operated under liquid gating, including field‐effect mobility of ≈10?1 cm2 V?1 s?1 and transconductance of ≈25 µS. Permeable membranes have been proven crucial to operate flexible LGTs under mechanical stress with reduced amounts of solution (<20 µL). Our rGO LGTs are operated in artificial sweat exploiting two different layouts based on lateral‐flow paper fluidics. These approaches pave the road toward future real‐time tracking of perspiration via a simple and cost‐effective approach. The reported findings contribute to the robust and scalable production of novel graphene‐based flexible devices, whose features fulfill the requirements of wearable electronics.  相似文献   

10.
Stretchable electrical interconnects based on serpentines combined with elastic materials are utilized in various classes of wearable electronics. However, such interconnects are primarily for direct current or low‐frequency signals and incompatible with microwave electronics that enable wireless communication. In this paper, design and fabrication procedures are described for stretchable transmission line capable of delivering microwave signals. The stretchable transmission line has twisted‐pair design integrated into thin‐film serpentine microstructure to minimize electromagnetic interference, such that the line's performance is minimally affected by the environment in close proximity, allowing its use in thin‐film bioelectronics, such as the epidermal electronic system. Detailed analysis, simulations, and experimental results show that the stretchable transmission line has negligible changes in performance when stretched and is operable on skin through suppressed radiated emission achieved with the twisted‐pair geometry. Furthermore, stretchable microwave low‐pass filter and band‐stop filter are demonstrated using the twisted‐pair structure to show the feasibility of the transmission lines as stretchable passive components. These concepts form the basic elements used in the design of stretchable microwave components, circuits, and subsystems performing important radio frequency functionalities, which can apply to many types of stretchable bioelectronics for radio transmitters and receivers.  相似文献   

11.
Highly conductive poly(3,4‐ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) films as stand‐alone electrodes for organic solar cells have been optimized using a solvent post‐treatment method. The treated PEDOT:PSS films show enhanced conductivities up to 1418 S cm?1, accompanied by structural and chemical changes. The effect of the solvent treatment on PEDOT:PSS has been investigated in detail and is shown to cause a reduction of insulating PSS in the conductive polymer layer. Using these optimized electrodes, ITO‐free, small molecule organic solar cells with a zinc phthalocyanine (ZnPc):fullerene C60 bulk heterojunction have been produced on glass and PET substrates. The system was further improved by pre‐heating the PEDOT:PSS electrodes, which enhanced the power conversion efficiency to the values obtained for solar cells on ITO electrodes. The results show that optimized PEDOT:PSS with solvent and thermal post‐treatment can be a very promising electrode material for highly efficient flexible ITO‐free organic solar cells.  相似文献   

12.
Body integrated wearable electronics can be used for advanced health monitoring, security, and wellness. Due to the complex, asymmetric surface of human body and atypical motion such as stretching in elbow, finger joints, wrist, knee, ankle, etc. electronics integrated to body need to be physically flexible, conforming, and stretchable. In that context, state‐of‐the‐art electronics are unusable due to their bulky, rigid, and brittle framework. Therefore, it is critical to develop stretchable electronics which can physically stretch to absorb the strain associated with body movements. While research in stretchable electronics has started to gain momentum, a stretchable antenna which can perform far‐field communications and can operate at constant frequency, such that physical shape modulation will not compromise its functionality, is yet to be realized. Here, a stretchable antenna is shown, using a low‐cost metal (copper) on flexible polymeric platform, which functions at constant frequency of 2.45 GHz, for far‐field applications. While mounted on a stretchable fabric worn by a human subject, the fabricated antenna communicated at a distance of 80 m with 1.25 mW transmitted power. This work shows an integration strategy from compact antenna design to its practical experimentation for enhanced data communication capability in future generation wearable electronics.  相似文献   

13.
Stretchable interconnects with invariable conductivity and complete elasticity, which return to their original shape without morphological hysteresis, are attractive for the development of stretchable electronics. In this study, a polydimethylsiloxane‐coated multifilament polyurethane‐based helical conductive fiber is developed. The stretchable helical fibers exhibit remarkable electrical performance under stretching, negligible electrical and mechanical hysteresis, and high electrical reliability under repetitive deformation (10 000 cycles of stretching with 100% strain). The resistance of the helical fibers barely increases until the applied strain reaches the critical strain, which is based on the helical diameter of each fiber. According to finite element analysis, uniform stress distribution is maintained in the helical fibers even under full stretching, owing to the fibers' true helix structure. In addition, the stretchable helical fibers have the ability to completely return to their original shapes even after being fully compressed in the vertical direction. Cylinder‐shaped connecting pieces made using 3D printing are designed for stable connection between the helical fibers and commercial components. A deformable light‐emitting diode (LED) array and biaxially stretchable LED display are fabricated using helical fibers. A skin‐mountable band‐type oximeter with helical fiber‐based electrodes is also fabricated and used to demonstrate real‐time detection of cardiac activities and analysis of brain activities.  相似文献   

14.
Flexible energy storage devices play a pivotal role in realizing the full potential of flexible electronics. This work presents high‐performance, all‐solid‐state, flexible supercapacitors by employing an innovative multilevel porous graphite foam (MPG). MPGs exhibit superior properties, such as large specific surface area, high electric conductivity, low mass density, high loading efficiency of pseudocapacitive materials, and controlled corrugations for accommodating mechanical strains. When loaded with pseudocapacitive manganese oxide (Mn3O4), the MPG/Mn3O4 (MPGM) composites achieve a specific capacitance of 538 F g?1 (1 mV s?1) and 260 F g?1 (1 mV s?1) based on the mass of pure Mn3O4 and entire electrode composite, respectively. Both are among the best of Mn3O4‐based supercapacitors. The MPGM is mechanically robust and can go through 1000 mechanical bending cycles with only 1.5% change in electric resistance. When integrated as all‐solid‐state symmetric supercapacitors, they offer a full cell specific capacitance as high as 53 F g?1 based on the entire electrode and retain 80% of capacitance after 1000 continuous mechanical bending cycles. Furthermore, the all‐solid‐state flexible supercapacitors are incorporated with strain sensors into self‐powered flexible devices for detection of both coarse and fine motions on human skins, i.e., those from finger bending and heart beating.  相似文献   

15.
The unprecedented medical achievements of the last century have dramatically improved our quality of life. Today, the high cost of many healthcare approaches challenges their long‐term financial sustainability and translation to a global scale. The convergence of wearable electronics, miniaturized sensor technologies, and big data analysis provides novel opportunities to improve the quality of healthcare while decreasing costs by the very early stage detection and prevention of fatal and chronic diseases. Here, some exciting achievements, emerging technologies, and standing challenges for the development of non‐invasive personalized and preventive medicine devices are discussed. The engineering of wire‐ and power‐less ultra‐thin sensors on wearable biocompatible materials that can be placed on the skin, pupil, and teeth is reviewed, focusing on common solutions and current limitations. The integration and development of sophisticated sensing nanomaterials are presented with respect to their performance, showing exemplary implementations for the detection of ultra‐low concentrations of biomarkers in complex mixtures such as the human sweat and breath. This review is concluded by summarizing achievements and standing challenges with the aim to provide directions for future research in miniaturized medical sensor technologies.  相似文献   

16.
Purely mechanical strain‐tunable microwave magnetism device with lightweight, flexible, and wearable is crucial for passive sensing systems and spintronic devices (noncontact), such as flexible microwave detectors, flexible microwave signal processing devices, and wearable mechanics‐magnetic sensors. Here, a flexible microwave magnetic CuFe2O4 (CuFO) epitaxial thin film with tunable ferromagnetic resonance (FMR) spectra is demonstrated by purely mechanical strains, including tensile and compressive strains, on flexible fluorophlogopite (Mica) substrates. Tensile and compressive strains show remarkable tuning effects of up‐regulation and down‐regulation on in‐plane FMR resonance field (Hr), which can be used for flexible tunable resonators and filters. The out‐of‐plane FMR spectra can also be tuned by mechanical bending, including Hr and absorption peak. The change of out‐of‐plane FMR spectra has great potential for flexible mechanics‐magnetic deformation sensors. Furthermore, a superior microwave magnetic stability and mechanical antifatigue character are obtained in the CuFO/Mica thin films. These flexible epitaxial CuFO thin films with tunable microwave magnetism and excellent mechanical durability are promising for the applications in flexible spintronics, microwave detectors, and oscillators.  相似文献   

17.
18.
Bioresorbable electronic technologies form the basis for classes of biomedical devices that undergo complete physical and chemical dissolution after a predefined operational period, thereby eliminating the costs and risks associated with secondary surgical extraction. A continuing area of opportunity is in the development of strategies for power supply for these systems, where previous studies demonstrate some utility for biodegradable batteries, radio frequency harvesters, solar cells, and others. This paper introduces a type of bioresorbable system for wireless power transfer, in which a rotating magnet serves as the transmitter and a bioresorbable antenna as the remote receiver, with capabilities for operation at low frequencies (<200 Hz). Systematic experimental and numerical studies demonstrate several unique advantages of this system, most significantly the elimination of impedance matching and electromagnetic radiation exposure presented with the types of radio frequency energy harvesters explored previously. These results add to the portfolio of power supply options in bioresorbable electronic implants.  相似文献   

19.
Flexible supercapacitors have potential for wearable energy storage due to their high energy/power densities and long operating lifetimes. High electrochemical performance with robust mechanical properties is highly desired for flexible supercapacitor electrodes. Usually, the mechanical properties are improved by choosing high flexible textile substrates but at the much expense of electrochemical performance due to the nonideal contact between conductive materials and textile substrates. Herein, the authors present an efficient, scalable, and general strategy for the simultaneous fabrication of high‐performance textile electrodes and yarn electrodes. It is interesting to find that the conformal reduced graphene oxide (RGO) layer is uniformly and successively painted on the surface of SnCl2 modified polyester fibers (M‐PEF) via a repeated “dyeing and drying” strategy. The large‐area textile electrodes and ultralong yarn electrodes are fabricated by using RGO/M‐PEF as substrate with subsequent deposition of polypyrrole. This work provides new opportunities for developing high flexible textile electrodes and yarn electrodes with further increased electrochemical performance and scalable production.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号