首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The development of lead‐free piezoceramics has attracted great interest because of growing environmental concerns. A polymorphic phase transition (PPT) has been utilized in the past to tailor piezoelectric properties in lead‐free (K,Na)NbO3 (KNN)‐based materials accepting the drawback of large temperature sensitivity. Here a material concept is reported, which yields an average piezoelectric coefficientd33 of about 300 pC/N and a high level of unipolar strain up to 0.16% at room temperature. Most intriguingly, field‐induced strain varies less than 10% from room temperature to 175 °C. The temperature insensitivity of field‐induced strain is rationalized using an electrostrictive coupling to polarization amplitude while the temperature‐dependent piezoelectric coefficient is discussed using localized piezoresponse probed by piezoforce microscopy. This discovery opens a new development window for temperature‐insensitive piezoelectric actuators despite the presence of a polymorphic phase transition around room temperature.  相似文献   

2.
Recently developed lead‐free incipient piezoceramics are promising candidates for off‐resonance actuator applications with their exceptionally large electromechanical strains. Their commercialization currently faces two major challenges: high electric field required for activating the large strains and large strain hysteresis. It is demonstrated that design of a relaxor/ferroelectric composite provides a highly effective way to resolve both challenges. Experimental results in conjunction with numerical simulations provide key parameters for the development of viable incipient piezoceramics.  相似文献   

3.
Piezoresponse force microscopy (PFM) is used to afford insight into the nanoscale electromechanical behavior of lead‐free piezoceramics. Materials based on Bi1/2Na1/2TiO3 exhibit high strains mediated by a field‐induced phase transition. Using the band excitation technique the initial domain morphology, the poling behavior, the switching behavior, and the time‐dependent phase stability in the pseudo‐ternary system (1–x)(0.94Bi1/2Na1/2TiO3‐0.06BaTiO3)‐xK0.5Na0.5NbO3 (0 <= x <= 18 mol%) are revealed. In the base material (x = 0 mol%), macroscopic domains and ferroelectric switching can be induced from the initial relaxor state with sufficiently high electric field, yielding large macroscopic remanent strain and polarization. The addition of KNN increases the threshold field required to induce long range order and decreases the stability thereof. For x = 3 mol% the field‐induced domains relax completely, which is also reflected in zero macroscopic remanence. Eventually, no long range order can be induced for x >= 3 mol%. This PFM study provides a novel perspective on the interplay between macroscopic and nanoscopic material properties in bulk lead‐free piezoceramics.  相似文献   

4.
Organic–inorganic halide perovskites are intrinsically unstable when exposed to moisture and/or light. Additionally, the presence of lead in many perovskites raises toxicity concerns. Herein, a thin film of barium zirconium sulfide (BaZrS3), a lead‐free chalcogenide perovskite, is reported. Photoluminescence and X‐ray diffraction measurements show that BaZrS3 is far more stable than methylammonium lead iodide (MAPbI3) in moist environments. Moisture‐ and light‐induced degradations in BaZrS3 and MAPbI3 are compared by using simulations and calculations based on density functional theory. The simulations reveal drastically slower degradation in BaZrS3 due to two factors—weak interaction with water and very low rates of ion migration. BaZrS3 photodetecting devices with photoresponsivity of ≈46.5 mA W?1 are also reported. The devices retain ≈60% of their initial photoresponse after 4 weeks under ambient conditions. Similar MAPbI3 devices degrade rapidly and show a ≈95% decrease in photoresponsivity in just 4 days. The findings establish the superior stability of BaZrS3 and strengthen the case for its use in optoelectronics. New possibilities for thermoelectric energy conversion using these materials are also demonstrated.  相似文献   

5.
High piezoelectricity of (K,Na)NbO3 (KNN) lead‐free materials benefits from a polymorphic phase transition (PPT) around room temperature, but its temperature sensitivity has been a bottleneck impeding their applications. It is found that good thermal stability can be achieved in CaZrO3‐modified KNN lead‐free piezoceramics, in which the normalized strain d 33* almost keeps constant from room temperature up to 140 °C. In situ synchrotron X‐ray diffraction experiments combined with permitivity measurements disclose the occurrence of a new phase transformation under an electrical field, which extends the transition range between tetragonal and orthorhombic phases. It is revealed that such an electrically enhanced diffused PPT contributed to the boosted thermal stability of KNN‐based lead‐free piezoceramics with high piezoelectricity. The present approach based on phase engineering should also be effective in endowing other lead‐free piezoelectrics with high piezoelectricity and good temperature stability.  相似文献   

6.
Lead‐free halide double perovskites with diverse electronic structures and optical responses, as well as superior material stability show great promise for a range of optoelectronic applications. However, their large bandgaps limit their applications in the visible light range such as solar cells. In this work, an efficient temperature‐derived bandgap modulation, that is, an exotic fully reversible thermochromism in both single crystals and thin films of Cs2AgBiBr6 double perovskites is demonstrated. Along with the thermochromism, temperature‐dependent changes in the bond lengths of Ag? Br (RAg? Br) and Bi? Br (RBi? Br) are observed. The first‐principle molecular dynamics simulations reveal substantial anharmonic fluctuations of the RAg? Br and RBi? Br at high temperatures. The synergy of anharmonic fluctuations and associated electron–phonon coupling, and the peculiar spin–orbit coupling effect, is responsible for the thermochromism. In addition, the intrinsic bandgap of Cs2AgBiBr6 shows negligible changes after repeated heating/cooling cycles under ambient conditions, indicating excellent thermal and environmental stability. This work demonstrates a stable thermochromic lead‐free double perovskite that has great potential in the applications of smart windows and temperature sensors. Moreover, the findings on the structure modulation‐induced bandgap narrowing of Cs2AgBiBr6 provide new insights for the further development of optoelectronic devices based on the lead‐free halide double perovskites.  相似文献   

7.
Coupling between non‐toxic lead‐free high‐k materials and 2D semiconductors is achieved to develop low voltage field effect transistors (FETs) and ferroelectric non‐volatile memory transistors as well. In fact, low voltage switching ferroelectric memory devices are extremely rare in 2D electronics. Now, both low voltage operation and ferroelectric memory function have been successfully demonstrated in 2D‐like thin MoS2 channel FET with lead‐free high‐k dielectric BaxSr1‐xTiO3 (BST) oxides. When the BST surface is coated with a 5.5‐nm‐ultrathin poly(methyl methacrylate) (PMMA)‐brush for improved roughness, the MoS2 FET with BST (x = 0.5) dielectric results in an extremely low voltage operation at 0.5 V. Moreover, the BST with an increased Ba composition (x = 0.8) induces quite good ferroelectric memory properties despite the existence of the ultrathin PMMA layer, well switching the MoS2 FET channel states in a non‐volatile manner with a ±3 V low voltage pulse. Since the employed high‐k dielectric and ferroelectric oxides are lead‐free in particular, the approaches for applying high‐k BST gate oxide for 2D MoS2 FET are not only novel but also practical towards future low voltage nanoelectronics and green technology.  相似文献   

8.
Unimorph cantilevers are made from 0.5BaTiO3‐0.5Sm2O3 (BTO‐SmO) self‐assembled vertical heteroepitaxial nanocomposite thin films, grown by PLD on (001) SrTiO3 single crystal substrates. The films remain piezoelectric up to at least 250 °C without losing any actuation. The longitudinal piezoelectric coefficient, d33, is ≈45 to 50 pm V?1 measured from room temperature to 250 °C. The transverse piezoelectric coefficient, d31, a key parameter of actuator performance, exceeds PZT (Pb1–xZrxTiO3) films at >200 pm V?1. Since the d31 coefficient was found to be positive, this opens up exciting new applications opportunities. The possible reasons for d31 > 0 are discussed in the light of 3D strain control in the nanocomposites.  相似文献   

9.
3D organic–inorganic and all‐inorganic lead halide perovskites have been intensively pursued for resistive switching memories in recent years. Unfortunately, instability and lead toxicity are two foremost challenges for their large‐scale commercial applications. Dimensional reduction and composition engineering are effective means to overcome these challenges. Herein, low‐dimensional inorganic lead‐free Cs3Bi2I9 and CsBi3I10 perovskite‐like films are exploited for resistive switching memory applications. Both devices demonstrate stable switching with ultrahigh on/off ratios (≈106), ultralow operation voltages (as low as 0.12 V), and self‐compliance characteristics. 0D Cs3Bi2I9‐based device shows better retention time and larger reset voltage than the 2D CsBi3I10‐based device. Multilevel resistive switching behavior is also observed by modulating the current compliance, contributing to the device tunability. The resistive switching mechanism is hinged on the formation and rupture of conductive filaments of halide vacancies in the perovskite films, which is correlated with the formation of AgIx layers at the electrode/perovskite interface. This study enriches the library of switching materials with all‐inorganic lead‐free halide perovskites and offers new insights on tuning the operation of solution‐processed memory devices.  相似文献   

10.
A novel catalyst‐free synthetic strategy for producing high‐quality CdTe nanowires in solution is proposed. A special reaction condition is intentionally constructed in the reaction system to induce the formation of nanowires through oriented in situ assembly of tiny particles. To establish such special synthetic conditions in the CdTe system, not only are its typical features and possible solutions deeply analyzed, but also related factors, such as the ligand environment, injection and growth temperature, and Cd‐to‐Te precursor ratio, are systemically investigated. High‐quality ultralong (up to 10 μm) and ultrathin (less than 10 nm) CdTe nanowires are produced in solution under optimal reaction conditions. Morphological, spectral, and compositional analyses are performed to examine the products formed at different reaction stages in order to clarify the formation mechanism of the CdTe nanowires. Furthermore, the transformation of the CdTe nanowires into CdTe/CdSe core–shell heterostructures is intensively explored, and the CdSe epitaxial growth process is specially tracked by morphological and spectral characterization techniques. Finally, CdTe nanowires coated with a continuous and dense CdSe shell are successfully fabricated by using a proper coating protocol.  相似文献   

11.
Lead‐free perovskite materials are exhibiting bright application prospects in photodetectors (PDs) owing to their low toxicity compared with traditional lead perovskites. Unfortunately, their photoelectric performance is constrained by the relatively low charge conductivity and poor stability. In this work, photoresponsive transistors based on stable lead‐free bismuth perovskites CsBi3I10 and single‐walled carbon nanotubes (SWCNTs) are first reported. The SWCNTs significantly strengthen the dissociation and transportation of the photogenerated charge carriers, which lead to dramatically improved photoresponsivity, while a decent Ilight/Idark ratio over 102 can be maintained with gate modulation. The devices exhibit high photoresponsivity (6.0 × 104 A W?1), photodetectivity (2.46 × 1014 jones), and external quantum efficiency (1.66 × 105%), which are among the best reported results in lead‐free perovskite PDs. Furthermore, the excellent stability over many other lead‐free perovskite PDs is demonstrated over 500 h of testing. More interestingly, the device also shows the application potential as a light‐stimulated synapse and its synaptic behaviors are demonstrated. In summary, the lead‐free bismuth perovskite‐based hybrid phototransistors with multifunctional performance of photodetection and light‐stimulated synapse are first demonstrated in this work.  相似文献   

12.
Swelling‐agent‐free synthesis of mesocellular foam (MCF)‐like silica mesophases by a pH‐dependent structural transformation using carboxy‐terminated triblock copolymer Pluronic P123 has been discovered. The structural properties of the MCF‐like silica materials can be modulated by controlled calcination or post‐synthesis treatment with sulfuric acid, and either closed‐cell or open‐cell mesostructures have been prepared. The MCF‐like silica mesophases have also been applied as hard templates to prepare MCF‐like carbon materials via a nanocasting route. Furthermore, the swelling‐agent‐free synthesis has been found to be less sensitive to the presence of organosilanes, and the cocondensation syntheses of functional MCF‐like materials with carboxyethyl, iodopropyl, or mercaptopropyl groups have also been demonstrated.  相似文献   

13.
Ferroelectrics undergo a size‐driven phase transition at the nanoscale below which the spontaneous polarization, their defining property, irrevocably ceases. This threshold often referred to as the superparaelectric limit has tremendous technological relevance in an era of progressing integration. Just as the balance of short‐range elastic and long‐range electrostatic ordering in bulk, the critical size depends on temperature. Room‐temperature tip‐enhanced Raman spectroscopy (TERS) imaging of individual lead titanate (PbTiO3) nanoislands is reported with a spatial resolution of ≈3 nm. Monitoring the spectral shift of the gold‐tip enhanced luminescence, which depends on the local refractive index, images grains composing the nanoislands. The wavelength of the enhanced luminescence shifts between the grains and their boundaries indicating the predicted core–shell structure of ferroelectric and paraelectric phase. The shear force configuration rules out the distance dependence of capacitive plasmonic coupling between tip and substrate as the origin of the observed shift. As the reported temperature‐changes in nonresonant TERS do not account for noticeable thermal effects, the underlying, even though weak, tip‐enhanced Raman spectrum of the grain core reflects PbTiO3 close to the ferroelectric‐to‐paraelectric phase transition which is primarily related to the finite size of the grains.  相似文献   

14.
Lead halide perovskites have demonstrated outstanding achievements in photoelectric applications owing to their unique properties. However, the moisture sensitivity of lead halide perovskite has rarely been developed into an applicable humidity sensor due to the intrinsic instability and toxicity issue. Herein, as a highly stable lead‐free perovskite, a Cs2BiAgBr6 thin film is chosen to be the active material for humidity sensor due to its extraordinary humidity‐dependent electrical properties and good stability. This Cs2BiAgBr6 thin film humidity sensor demonstrates a superfast response time (1.78 s) and recovery time (0.45 s). The superfast response and recovery properties can be attributed to the reversible physisorption of water molecules, which can be easily adsorbed onto or desorbed from the thin film surface. Moreover, the sensor also shows an excellent reliability and stability properties as well as logarithmic linearity in a relative humidity's range of 15% to 78%. The lead‐free Cs2BiAgBr6 perovskite possesses great potential for application in real‐time humidity sensing.  相似文献   

15.
Despite intensive research on photochemical activation of sol–gel metal oxide materials, the relatively long processing time and lack of deep understanding of the underlying chemical courses have limited their broader impact on diverse materials and applications such as thin‐film electronics, photovoltaics, and catalysts. Here, in‐depth studies on the rapid photochemical activation of diverse sol–gel oxide films using various spectroscopic and electrical investigations for the underlying physicochemical mechanism are reported. Based on the exhaustive chemical and physical analysis, it is noted that deep ultraviolet‐promoted rapid film formation such as densification, polycondensation, and impurity decomposition is possible within 5 min via in situ radical‐mediated reactions. Finally, the rapid fabrication of all‐solution metal oxide thin‐film‐transistor circuitry, which exhibits stable and reliable electrical performance with a mobility of >12 cm2 V?1 s?1 and an oscillation frequency of >650 kHz in 7‐stage ring oscillator even after bending at a radius of <1 mm is demonstrated.  相似文献   

16.
Realization of ferroelectric (FE) devices based on the polarization effects of Pb(Zr0.52Ti0.48)O3 (PZT) has reinforced the investigation of this material in multiple dimensions and length scales. Multi‐level hierarchical nanostructure engineering in PZT thin films offer dual advantages of variable length‐scale and dimensionality. Here, the growth of hierarchically ordered PZT nano‐hetero­structures (Nhs) from PZT seed‐layer deposited on SrTiO3:Nb (100) substrates, using a physical/chemical combined methodology involving pulsed laser deposition (PLD) and hydrothermal processes, is reported. Systematic SEM, TEM, and Raman spectroscopy studies reveal mixed hetero‐ and homo‐epitaxial growth mechanism. In the final stage, 3D Nh units cross‐link and form a dense network‐like Nh PZT thin‐film. FE polarizations are measured without using any polymer fill‐layer which otherwise introduces huge dielectric losses and lowers the polarization values for a FE device. In benefit, well saturated and symmetric FE hysteresis loops are observed with high degree of squareness and a high remnant polarization (54 μC cm‐2 at a coercive field of 237 kV cm‐1). This work provides a pathway towards preparing hierarchical PZT Nhs offering coherent design of high‐performance FE capacitors for data storage technologies in future.  相似文献   

17.
18.
Large‐size crystals of organic–inorganic hybrid perovskites (e.g., CH3NH3PbX3, X = Cl, Br, I) have gained wide attention since their spectacular progress on optoelectronic technologies. Although presenting brilliant semiconducting properties, a serious concern of the toxicity in these lead‐based hybrids has become a stumbling block that limits their wide‐scale applications. Exploring lead‐free hybrid perovskite is thus highly urgent for high‐performance optoelectronic devices. Here, a new lead‐free perovskite hybrid (TMHD)BiBr5 (TMHD = N,N,N,N‐tetramethyl‐1,6‐hexanediammonium) is prepared from facile solution process. Emphatically, inch‐size high‐quality single crystals are successfully grown, the dimensions of which reach up to 32 × 24 × 12 mm3. Furthermore, the planar arrays of photodetectors based on bulk lead‐free (TMHD)BiBr5 single crystals are first fabricated, which shows sizeable on/off current ratios (≈103) and rapid response speed (τrise = 8.9 ms and τdecay = 10.2 ms). The prominent device performance of (TMHD)BiBr5 strongly underscores the lead‐free hybrid perovskite single crystals as promising material candidates for optoelectronic applications.  相似文献   

19.
Rechargeable Li batteries based on group VIA element cathodes, such as tellurium, are emerging due to their capability to provide equivalent theoretical volumetric capacity density to O and S, as well as an improved activity to react with Li. Herein, bifunctional and elastic carbon nanotube (CNT) aerogel is fabricated to combine with Te nanowires, yielding two types of binder/collector‐free Te cathodes to assemble Li‐Te batteries. The CNTs with high electronic conductivity and hollow porous structure enable stable electric contact and fast transportation of Li+, while trapping Te and Li2Te in its network, triggering fast and stable Li‐Te electrochemistry. Both cathodes are also provided with fine compressibility, helping to buffer their volume changes during lithiation/delithiation and improving electrode integrity. Both cathodes deliver high specific capacity, fine cycling stability, and favorable high‐rate capability, proving their competence in building high‐energy rechargeable Li‐ion batteries.  相似文献   

20.
This paper describes a new amorphous wide‐band gap semiconductor with photoluminescence (PL) at room temperature. The amorphous PbTiO3 was prepared by a sol–gel‐like process in powder and thin film form. The optical property and the PL behaviour showed a direct relation to the amorphous structure. The PL peak energy can be controlled by the change of the exciting surge energy. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号