首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Isocitrate dehydrogenase (IDH) enzymes have recently become a focal point for research aimed at understanding the biology of glioma. IDH1 and IDH2 are mutated in 50%–80% of astrocytomas, oligodendrogliomas, oligoastrocytomas, and secondary glioblastomas but are seldom mutated in primary glioblastomas. Gliomas with IDH1/2 mutations always harbor other molecular aberrations, such as TP53 mutation or 1p/19q loss. IDH1 and IDH2 mutations may serve as prognostic factors because patients with an IDH-mutated glioma survive significantly longer than those with an IDH–wild-type tumor. However, the molecular pathogenic role of IDH1/2 mutations in the development of gliomas is unclear. The production of 2-hydroxyglutarate and enhanced NADP+ levels in tumor cells with mutant IDH1/2 suggest mechanisms through which these mutations contribute to tumorigenesis. Elucidating the pathogenesis of IDH mutations will improve understanding of the molecular mechanisms of gliomagenesis and may lead to development of a new molecular classification system and novel therapies.  相似文献   

2.
Mutations in isocitrate dehydrogenase 1 (IDH1) and IDH2 are found frequently in malignant gliomas and are likely involved in early gliomagenesis. To understand the prevalence of these mutations and their relationship to other genetic alterations and impact on prognosis for Japanese glioma patients, we analyzed 250 glioma cases. Mutations of IDH1 and IDH2 were found in 73 (29%) and 2 (1%) cases, respectively. All detected mutations were heterozygous, and most mutations were an Arg132His (G395A) substitution. IDH mutations were frequent in oligodendroglial tumors (37/52, 71%) and diffuse astrocytomas (17/29, 59%), and were less frequent in anaplastic astrocytomas (8/29, 28%) and glioblastomas (13/125, 10%). The pilocytic astrocytomas and gangliogliomas did not have either mutation. Notably, 28 of 30 oligodendroglial tumors harboring the 1p/19q co-deletion also had an IDH mutation, and these alterations were significantly correlated (P < 0.001). The association between TP53 and IDH mutation was significant in diffuse astrocytomas (P = 0.0018). MGMT promoter methylation was significantly associated with IDH mutation in grade 2 (P < 0.001) and grade 3 (P = 0.02) gliomas. IDH mutation and 1p/19q co-deletion were independent favorable prognostic factors for patients with grade 3 gliomas. For patients with grade 3 gliomas and without 1p/19q co-deletion, IDH mutation was strongly associated with increased progression-free survival (P < 0.0001) and overall survival (P < 0.0001), but no such marked correlation was observed with grade 2 gliomas or glioblastomas. Therefore, IDH mutation would be most useful when assessing prognosis of patients with grade 3 glioma with intact 1p/19q; anaplastic astrocytomas account for most of these grade 3 gliomas.  相似文献   

3.
We screened exon 4 of the gene isocitrate dehydrogenase 1 (NADP+), soluble (IDH1) for mutations in 596 primary intracranial tumors of all major types. Codon 132 mutation was seen in 54% of astrocytomas and 65% of oligodendroglial tumors but in only 6% of glioblastomas (3% of primary and 50% of secondary glioblastomas). There were no mutations in any other type of tumor studied. While mutations in the tumor protein p53 gene (TP53) and total 1p/19q deletions were mutually exclusive, IDH1 mutations were strongly correlated with these genetic abnormalities. All four types of mutant IDH1 proteins showed decreased enzymatic activity. The data indicate that IDH1 mutation combined with either TP53 mutation or total 1p/19q loss is a frequent and early change in the majority of oligodendroglial tumors, diffuse astrocytomas, anaplastic astrocytomas, and secondary glioblastomas but not in primary glioblastomas.  相似文献   

4.
Low-grade diffuse gliomas WHO grade II (diffuse astrocytoma, oligoastrocytoma, oligodendroglioma) are characterized by frequent IDH1/2 mutations (>80%) that occur at a very early stage. In addition, the majority of diffuse astrocytomas (about 60%) carry TP53 mutations, which constitute a prognostic marker for shorter survival. Oligodendrogliomas show frequent loss at 1p/19q (about 70% of cases), which is associated with longer survival. With respect to clinical outcome, molecular classification on the basis of IDH1/2 mutations, TP53 mutations, and 1p/19q loss showed a predictive power similar to histological classification. IDH1/2 mutations are frequent (>80%) in secondary glioblastomas that have progressed from low-grade or anaplastic astrocytomas. Primary (de novo) glioblastomas with IDH1/2 mutations are very rare (<5%); they show an age distribution and genetic profile similar to secondary glioblastomas and are probably misclassified. Using the presence of IDH1/2 mutations as a diagnostic criterion, secondary glioblastomas account for approximately 10% of all glioblastomas. IDH1/2 mutations are the most significant predictor of favorable outcome of glioblastoma patients. The high frequency of IDH1/2 mutations in oligodendrogliomas, astrocytomas, and secondary glioblastomas derived thereof suggests these tumors share a common progenitor cell population. The absence of this molecular marker in primary glioblastomas suggests a different cell of origin; both glioblastoma subtypes acquire a similar histological phenotype as a result of common genetic alterations, including the loss of tumor suppressor genes on chromosome 10q.  相似文献   

5.
The metabolic genes isocitrate dehydrogenase 1 (IDH1) and IDH2 are commonly mutated in low‐grade glioma and in a subset of glioblastoma. These mutations co‐occur with other recurrent molecular alterations, including 1p/19q codeletions and tumor suppressor protein 53 (TP53) and alpha thalassemia/mental retardation (ATRX) mutations, which together help to define a molecular signature that aids in the classification of gliomas and helps to better predict clinical behavior. A confluence of research suggests that glioma development in IDH‐mutant and IDH wild‐type tumors is driven by different oncogenic processes and responds differently to current treatment paradigms. Herein, the authors discuss the discovery of IDH mutations and associated molecular alterations in glioma, review clinical features common to patients with IDH‐mutant glioma, and highlight current understanding of IDH mutation‐driven gliomagenesis with implications for emerging treatment strategies. Cancer 2017;123:4535‐4546 . © 2017 American Cancer Society.  相似文献   

6.
Adult grade II low-grade gliomas (LGG) are classified according to the WHO as astrocytomas, oligodendrogliomas or mixed gliomas. TP53 mutations and 1p19q codeletion are the main molecular abnormalities recorded, respectively, in astrocytomas and oligodendrogliomas and in mixed gliomas. Although IDH mutations (IDH1 or IDH2) are recorded in up to 85?% of low-grade gliomas, IDH negative gliomas do occur. We have searched for p53 expression, 1p19q codeletion and IDH status (immunohistochemical detection of the common R132H IDH1 mutation and IDH direct sequencing). Internexin alpha (INA) expression previously recorded to be associated with 1p19q codeletion (1p19q+) gliomas was also analysed. Low-grade gliomas were accurately classified into four groups: group 1, IDH+/p53?/1p19q?; group 2, IDH+/p53?/1p19q+; group 3, IDH+/p53+/1p19q?; and group 4, triple negative gliomas. In contrast to the WHO classification, this molecular classification predicts overall survival on uni- and multivariate analysis (P?=?0.001 and P?=?0.007, respectively). Group 4 carries the worst prognosis and group 2 the best. Interestingly, p53?+/INA? expression predicts lack of 1p19q codeletion (specificity 100?%, VPP 100?%). The combined use of these three molecular markers allow for an accurate prediction of survival in LGG. These findings could significantly modify LGG classification and may represent a new tool to guide patient-tailored therapy. Moreover, immunohistochemical detection of p53, INA and mR132H IDH1 expression could represent an interesting prescreening test to be performed before 1p19q codeletion, IDH1 minor mutation and IDH2 mutation detection.  相似文献   

7.
According to the 2016 World Health Organization classification of tumors of the central nervous system, detecting 1p/19q co-deletion became essential in clinical neuropathology for gliomas with oligodendroglioma-like morphology. Here, we assessed genomic profiles of glioblastoma in 80 cases including 1p/19q status using fluorescent in situ hybridization (FISH), array-comparative genomic hybridization (aCGH), and/or whole exome sequencing (WES). Paraffin-embedded tumor tissues were subjected to FISH analysis, and the corresponding frozen tissues from the same tumors were evaluated for aCGH and/or WES for 1p/19q co-deletion and other genetic parameters, which included IDH1-R132H, ATRX, TP53, CIC, and NOTCH1 mutations and MGMT methylation status. We also evaluated correlations between 1p/19q co-deletion status and molecular markers or clinical outcomes. The FISH analyses revealed 1p/19q co-deletion in two cases, isolated deletion of 1p in six cases, and 19q in two cases, whereas the aCGH and WES results showed isolated deletion of 19q in four cases and 19 monosomy in only one case. Eleven cases showed discordant 1p/19q results between aCGH/WES and FISH analysis, and in most of them, 1p and/or 19q deletion on FISH analysis corresponded to the partial deletions at 1p36 and/or 19q13 on aCGH/WES. Our cohort exhibited IDH1-R132H mutations (5.4%), MGMT promotor methylation (34.6%), and mutations in ATRX (9.5%), TP53 (33.3%), and NOTCH1 (3.8%) but not in CIC (0%). In addition, MGMT methylation and ATRX mutation were significantly associated with clinical prognosis. In glioblastomas, partial deletions of 1p36 and/or 19q13 were uncommon, some of which appeared as 1p and/or 19q deletions on FISH analysis.  相似文献   

8.
PURPOSE: The histological diagnosis of human gliomas is of great importance for estimating patient prognosis and guiding therapy but suffers from being subjective and, therefore, variable. We hypothesized that molecular genetic analysis could provide a more objective means to classify tumors and, thus, reduce diagnostic variability. EXPERIMENTAL DESIGN: We performed molecular genetic analysis on 91 nonselected gliomas for 1p, 19q, 10q, TP53, epidermal growth factor receptor, and cyclin-dependent kinase 4 abnormalities and compared with the consensus diagnoses established among four independent neuropathologists. RESULTS: There were six astrocytomas, seven anaplastic astrocytomas, 45 glioblastomas, 21 oligodendrogliomas, eight anaplastic oligodendrogliomas, three oligoastrocytomas, and one anaplastic oligoastrocytoma. Twenty-nine cases had either 1p or 19qloss of heterozygosity (LOH) while retaining both copies of 10q, of which 25 (86%) were histologically oligodendroglioma, anaplastic oligodendroglioma, oligoastrocytoma, or anaplastic oligoastrocytoma. As for the oligodendroglial tumors, unanimous agreement of the initial diagnoses was almost restricted to those cases with combined 1p/19qLOH, whereas all nine tumors without 1p loss initially received variable diagnoses. Interestingly, TP53 mutation was inversely related to 1pLOH in all gliomas (P = 0.0003) but not 19qLOH (P = 0.15). CONCLUSIONS: These data demonstrate that molecular genetic analysis of 1p/19q/10q/TP53 has significant diagnostic value, especially in detecting oligodendroglial tumors. In addition, 1pLOH and TP53 mutations in gliomas may be markers of oligodendroglial and astrocytic pathways, respectively, which may separate gliomas with the same histological diagnosis, especially oligodendroglial tumors and glioblastomas. Testing for those molecular genetic alterations would be essential to obtain more homogeneous sets of gliomas for the future clinical studies.  相似文献   

9.
Molecular markers of prognosis in astrocytic tumors   总被引:5,自引:0,他引:5  
BACKGROUND: Astrocytoma is a primary brain tumor that affects 20,000 Americans each year. To date, only age and histologic grade stand out as independent predictors of survival. There is now increased interest in the use of molecular markers as objective standards against which to establish diagnosis and grade. METHODS: The study evaluated human glioma tumor suppressor genes and associated loci in fresh snap-frozen gliomas from 63 males and 37 females, with a median age of 42 years, including 19 low-grade astrocytomas. The tumor samples were selected so that about equal numbers of glioblastomas from younger and older patients were represented in the series. Methods for suppressor gene and genetic loci evaluation included loss of heterozygosity (LOH) analysis, multiplex polymerase chain reaction analysis, and gene sequencing. RESULTS: Low-grade astrocytomas had the least number of molecular abnormalities. LOH on 9p and/or CDKN2A deletion occurred more often in glioblastomas (P < 0.001), LOH on 17p/TP53 mutations occurred more frequently in anaplastic astrocytomas (AAs; P = 0.112), and LOH on 10q/PTEN mutation frequency was similar in glioblastomas and AAs (P < 0.001). Poorer survival was associated significantly with the occurrence of either deletion of p16 (P = 0.031), LOH on 9p (P = 0.016), or LOH on 10q (P = 0.0007). The absence of LOH on 17p and the presence of PTEN mutation were associated marginally with survival. Even though TP53 mutations were more frequent among younger patients with glioblastoma, they had no statistically significant effect on survival after adjustment for age (P = 0.62). In all multivariate models, age and grade were the only significant predictors of survival or were nearly significant predictors of survival. CONCLUSIONS: The results suggest that LOH on 9p and p16 deletions may prove to be objective standards for the diagnosis of patients with high-grade gliomas, although the absence of these abnormalities is nonprognostic.  相似文献   

10.
The molecular subgrouping of diffuse gliomas was recently found to stratify patients into prognostically distinct groups better than histological classification. Among several molecular parameters, the key molecules for the subtype diagnosis of diffuse gliomas are IDH mutation, 1p/19q co-deletion, and ATRX mutation; 1p/19q co-deletion is undetectable by immunohistochemistry, but is mutually exclusive with ATRX and p53 mutation in IDH mutant gliomas. Therefore, we applied ATRX and p53 immunohistochemistry instead of 1p/19q co-deletion analysis. The prognostic value of immunohistochemical diagnosis for Grade III gliomas was subsequently investigated. Then, the same immunohistochmical diagnostic approach was expanded for the evaluation of Grade II and IV diffuse glioma prognosis. The results indicate immunohistochemical analysis including IDH1/2, ATRX, p53, and Ki-67 index is valuable for the classification of diffuse gliomas, which is useful for the evaluation of prognosis, especially Grade III gliomas and lower-grade gliomas (i.e., Grade II and III).  相似文献   

11.
Several molecular genetic alterations have been characterized in gliomas in the past years. Molecular profiles have been associated with specific histologic and prognostic tumor subgroups, contributing to improve the classification of gliomas. At least two alternative molecular pathways have been suggested in the astrocytoma progression involving TP53 inactivation (secondary glioblastomas) and EGFR amplification (de novo glioblastomas) respectively. Oligodendroglial tumors have demonstrated recurrent combined loss of chromosome 1p/19q, which represent a favorable prognosis marker and probably a predictor of a good chemosensitivity of the tumor. This review discusses recent molecular advances and clinical implications with special focus on oligodendroglial tumors.  相似文献   

12.
Background: The standard of care in high grade glioma (HGG) is maximal safe surgical resection followed by adjuvant radiotherapy (RT) with/without chemotherapy. For anaplastic gliomas, studies have shown use of procarbazine, lomustine, vincristine (PCV) improves overall survival (OS) and progression free survival (PFS). Currently, there is substantial evidence that molecular markers strongly predict prognosis and response to treatment. Methods: Between January 2016 to January 2018, 42 patients were accrued and followed up till April 2019. The primary end points were to correlate molecular markers with response to therapy in terms of OS and PFS in HGG. The secondary end point was to evaluate frequency of 1p/19q codeletion, IDH 1 mutation, ATRX deletion and p53 in HGG patients. Results: The median age was 46 years (range 18-67) with M:F ratio 30:12. The frequency of IDH1 mutation,1p/19q codeletion, p53 mutation and ATRX mutation were 42.8%, 16.6%, 42.8% and 14.2% respectively. All the seven patients with 1p/19q codeletion had IDH1 mutation. Median follow up was 22 months. The 20-months PFS for different mutations were as follows; IDH1-mutated vs wild type: 53.6% vs 29.8%; p-0.035, 1p/19q codeleted vs non-codeleted: 85.7% vs 62.3%; p-0.011, p53 wild type vs mutated 32.1% vs 35.6%; p-0.035 and ATRX lost vs retained: 55.6% vs 53.3%; p- 0.369. The 20-months OS for IDH1 mutated vs wild type: 82.4% vs 30.6%; p-0.014, 1p/19q codeleted vs non-codeleted: 85.7% vs 65.8%; p-0.104, p53 wild-type vs mutated 45.5% vs 73.9%; p-0.036 and ATRX lost vs retained: 100% vs 60.3%; p-0.087. Conclusion: Codeletion of 1p/19q with IDH1 mutation in HGG is associated with a significantly favourable PFS. However, larger studies with longer follow up are required to evaluate OS and PFS in all the molecular subgroups.  相似文献   

13.

Background

The discovery of isocitrate dehydrogenase 1 and 2 gene (IDH1/2) mutations has enabled grade III glioma to be divided into mutated and wild-type IDH1/2 groups, which are known to carry different prognosis and molecular features. However, detailed subgroup analysis of grade III glioma is limited. To address this, we investigated molecular and prognostic features of grade III glioma with and without IDH1/2 mutation.

Methods

We retrospectively analyzed 115 grade III glioma patients. Clinical parameters were obtained from medical records. The mutation of IDH1/2 and TP53 was analyzed by direct sequencing. O6-methylguanine methyltransferase gene (MGMT) gene promoter methylation status was determined by methylation-specific polymerase chain reaction. Detection of chromosome copy number changes of 1p, 7p (EGFR), 9p (CDKN2A), 10q (PTEN), and 19q was carried out by multiple ligation-dependent probe amplification. Patients were divided into two groups, mutated IDH1/2 and wild-type IDH1/2, for correlation with the factors analyzed.

Results

In our series, as previously reported, IDH1/2 mutation was an independent prognostic marker for improved progression-free and overall survival (OS) (P < 0.0001 and P < 0.0001, respectively) in patients with grade III gliomas. Subgroup analysis found that incomplete resection, 7p gain, and TP53 mutation were independent prognostic factors of poor outcome in grade III glioma patients with mutated IDH1/2 (P = 0.0092, P = 0.015 and P = 0.026, respectively), while there were none in patients with wild-type IDH1/2.

Conclusions

IDH1/2 gene status was significantly associated with prognosis in grade III gliomas. Subgroup analysis found that poor prognostic factors existed even in patients with IDH1/2 mutation.  相似文献   

14.
During the 6 month period following chemoradiotherapy, gliomas frequently develop new areas of contrast enhancement, which are due to treatment effect rather than tumor progression. We sought to characterize this phenomenon in oligodendrogliomas (OG) and mixed oligoastrocytomas (MOA). We reviewed the imaging findings from 143 patients with a WHO grade II or III OG or MOA for evidence of pseudoprogression (PsP) or early tumor progression. We characterized these cases for 1p/19q codeletions by FISH, IDH1 R132H mutation by immunohistochemistry, and TP53, ATRX, and EGFR mutations by next generation sequencing. We then reviewed the pathologic specimens of the patient cases in which a re-resection was performed. We found that OG and MOA that are 1p/19q intact developed PsP at a higher rate than tumors that are 1p/19q codeleted (27 vs. 8?%). Moreover, IDH1 wild-type (WT) tumors developed PsP at a higher rate than IDH1 R132H cases (27 vs. 11?%). Patients with ATRX or TP53 mutations developed PsP at an intermediate rate of 21?%. Ten patients in our cohort underwent a re-resection for early contrast enhancement; these tumors were predominantly 1p/19q intact (90?%) and had a low rate of IDH1 R132H mutation (50?%). 8 of 10 tumors demonstrated primarily treatment effects, while the remaining 2 of 10 demonstrated recurrent/residual tumor of the same grade. Early contrast enhancement that develops during the first 6 months after chemoradiotherapy is typically due to PsP and occurs primarily in OG and MOA that are 1p/19q intact and IDH WT.  相似文献   

15.
Oligodendrogliomas account for a small subset of all gliomas, but they often are more sensitive to treatment than other glioma subtypes. In addition, oligodendrogliomas are the first central nervous system neoplasm for which a specific molecular abnormality, allelic loss of 1p/19q (1p/19q loss), correlates with patient outcome in large-scale prospective clinical trials. However, the incorporation of 1p/19q status into clinical practice remains controversial. Other molecular alterations found in oligodendrogliomas include hypermethylation of the promoter for the MGMT gene, TP53 mutations, EGFR and platelet-derived growth factor/PDGFR alterations, and 9p and 10q loss.  相似文献   

16.
17.

Background

Nuclear factor erythroid 2–related factor 2 (NRF2) plays pivotal roles in cytoprotection. We aimed at clarifying the contribution of the NRF2 pathway to malignant glioma pathology.

Methods

NRF2 target gene expression and its association with prognosis were examined in 95 anaplastic gliomas with or without isocitrate dehydrogenase (IDH) 1/2 gene mutations and 52 glioblastomas. To explore mechanisms for the altered activity of the NRF2 pathway, we examined somatic mutations and expressions of the NRF2 gene and those encoding NRF2 regulators, Kelch-like ECH-associated protein 1 (KEAP1) and p62/SQSTSM. To clarify the functional interaction between IDH1 mutations and the NRF2 pathway, we introduced a mutant IDH1 to T98 glioblastoma-derived cells and examined the NRF2 activity in these cells.

Results

NRF2 target genes were elevated in 13.7% and 32.7% of anaplastic gliomas and glioblastomas, respectively. Upregulation of NRF2 target genes correlated with poor prognosis in anaplastic gliomas but not in glioblastomas. Neither somatic mutations of NRF2/KEAP1 nor dysregulated expression of KEAP1/p62 explained the increased expression of NRF2 target genes. In most cases of anaplastic glioma with mutated IDH1/2, NRF2 and its target genes were downregulated. This was reproducible in IDH1 R132H–expressing T98 cells. In minor cases of IDH1/2-mutant anaplastic gliomas with increased expression of NRF2 target genes, the clinical outcomes were significantly poor.

Conclusions

The NRF2 activity is increased in a significant proportion of malignant gliomas in general but decreased in the majority of IDH1/2-mutant anaplastic gliomas. It is plausible that the NRF2 pathway plays an important role in tumor progression of anaplastic gliomas with IDH1/2 mutations.  相似文献   

18.
To identify novel glioma‐associated pathomechanisms and molecular markers, we performed an array‐based comparative genomic hybridization analysis of 131 diffuse astrocytic gliomas, including 87 primary glioblastomas (pGBIV), 13 secondary glioblastomas (sGBIV), 19 anaplastic astrocytomas (AAIII) and 12 diffuse astrocytomas (AII). All tumors were additionally screened for IDH1 and IDH2 mutations. Expression profiling was performed for 74 tumors (42 pGBIV, 11 sGBIV, 13 AAIII, 8 AII). Unsupervised and supervised bioinformatic analyses revealed distinct genomic and expression profiles separating pGBIV from the other entities. Classifier expression signatures were strongly associated with the IDH1 gene mutation status. Within pGBIV, the rare subtype of IDH1 mutant tumors shared expression profiles with IDH1 mutant sGBIV and was associated with longer overall survival compared with IDH1 wild‐type tumors. In patients with IDH1 wild‐type pGBIV, PDGFRA gain or amplification as well as 19q gain were associated with patient outcome. Array‐CGH analysis additionally revealed homozygous deletions of the FGFR2 gene at 10q26.13 in 2 pGBIV, with reduced FGFR2 mRNA levels being frequent in pGBIV and linked to poor outcome. In conclusion, we report that diffuse astrocytic gliomas can be separated into 2 major molecular groups with distinct genomic and mRNA profiles as well as IDH1 gene mutation status. In addition, our results suggest FGFR2 as a novel glioma‐associated candidate tumor suppressor gene on the long arm of chromosome 10.  相似文献   

19.
A recent study reported on mutations in the active site of the isocitrate dehydrogenase 1 ( IDH1 ) gene in several types of gliomas. All mutations detected resulted in an amino acid exchange at position 132. We analyzed the genomic region spanning wild-type R132 of IDH1 by direct sequencing in 125 glial tumors. A total of 39 IDH1 mutations were observed. Mutations of the IDH2 gene, homologous to IDH1 , were often detected in gliomas without IDH1 mutations. In the present study, R172 mutation of the IDH2 gene was detected in one anaplastic astrocytoma. IDH1 or IDH2 mutations were frequently in oligodendrogliomas (67%), anaplastic astrocytomas (62%), anaplastic oligoastrocytomas (75%), anaplastic oligodendrogliomas (50%), secondary glioblastomas (67%), gangliogliomas (38%), and anaplastic gangliogliomas (60%). Primary glioblastomas were characterized by a low frequency of mutations (5%) at amino acid position 132 of IDH1 . Mutations of the IDH1 or IDH2 genes were significantly associated with improved outcome in patients with anaplastic astrocytomas. Our data suggest that IDH1 or IDH2 mutation plays a role in early tumor progression of several types of glioma and might arise from a common glial precursor. The infrequency of IDH1 mutation in primary glioblastomas revealed that these subtypes are genetically distinct entities from other glial tumors. ( Cancer Sci  2009; 100: 1996–1998)  相似文献   

20.
Extensive genomic and gene expression studies have been performed in gliomas, but the epigenetic alterations that characterize different subtypes of gliomas remain largely unknown. Here, we analyzed the methylation patterns of 807 genes (1536 CpGs) in a series of 33 low-grade gliomas (LGGs), 36 glioblastomas (GBMs), 8 paired initial and recurrent gliomas, and 9 controls. This analysis was performed with Illumina's Golden Gate Bead methylation arrays and was correlated with clinical, histological, genomic, gene expression, and genotyping data, including IDH1 mutations. Unsupervised hierarchical clustering resulted in 2 groups of gliomas: a group corresponding to de novo GBMs and a group consisting of LGGs, recurrent anaplastic gliomas, and secondary GBMs. When compared with de novo GBMs and controls, this latter group was characterized by a very high frequency of IDH1 mutations and by a hypermethylated profile similar to the recently described glioma CpG island methylator phenotype. MGMT methylation was more frequent in this group. Among the LGG cluster, 1p19q codeleted LGG displayed a distinct methylation profile. A study of paired initial and recurrent gliomas demonstrated that methylation profiles were remarkably stable across glioma evolution, even during anaplastic transformation, suggesting that epigenetic alterations occur early during gliomagenesis. Using the Cancer Genome Atlas data set, we demonstrated that GBM samples that had an LGG-like hypermethylated profile had a high rate of IDH1 mutations and a better outcome. Finally, we identified several hypermethylated and downregulated genes that may be associated with LGG and GBM oncogenesis, LGG oncogenesis, 1p19q codeleted LGG oncogenesis, and GBM oncogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号