首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 109 毫秒
1.
采集大连市4个大气自动监测点位30dPM2.5和PM10质量浓度小时值的监测数据,通过对每个点位720个有效数据对的统计分析,研究二者质量浓度的相关性及 PM2.5/PM10比值的分布情况,并研究了气象因素对PM2.5与PM10的影响。结果表明,雾使PM2.5PM10浓度都减小,但二者比值也随之降低;强风会使PM10浓度增大,但PM2.5浓度却减小。  相似文献   

2.
利用2011年丰都县环境空气自动监测站的监测数据和同期气象观测资料,分析PM10浓度变化规律及其与各种气象条件的相关性.结果表明,PM10污染程度有明显的季节性变化,夏季处于低值,冬季处于高值;降水量、温度、风速、湿度、风向对PM10浓度均有明显影响.  相似文献   

3.
对2009年9月~2010年9月巫山县环境空气自动监测站的监测数据进行统计、分析和评价,结果表明:PM10年均浓度为95.0μg/m3;日均浓度呈偏态(左偏)分布;污染程度有明显的季节性变化,冬季>春季>秋季>夏季;春、夏季分别在上午9点和中午12点达到全天最大值,而秋、冬季则出现在晚上19点;风向、风速和相对湿度对PM10浓度均有明显的影响.  相似文献   

4.
可吸入颗粒物PM10是铜陵市环境空气中的主要污染物,本次工作采集了样品,并测量了样品中15种元素、5种水溶性离子的含量,初步了解了铜陵市环境空气中颗粒物污染的化学组成及其变化特征。  相似文献   

5.
耦合GIS和BP神经网络模型,探讨不同算法和隐藏神经元数对PM10浓度预测和空间分布的影响,结果显示:不同算法的PM10浓度预测值与监测值的平均相关系数和平均相对误差分别为0.85和17.58%,Levenberg-Marquardt优化算法在隐藏神经元数为20时预测精度最高.相同算法,不同隐藏层神经元数对PM10浓度的预测结果影响较大,不同算法,相同神经元数对PM10浓度的预测结果影响较小.不同算法的PM10浓度空间分布模拟在中北部的高风险区和东南部的低风险区与监测数据结果基本一致.  相似文献   

6.
根据2014年烟台市范围内全部环境空气自动监测点位的PM 10和PM2.5数据,分析了不同监测仪器组合下PM10和PM2.5的倒挂情况,选取了倒挂率较高的4种监测仪器组合,将监测数据分为不同季节和时段比较分析,结果表明:大气湿度较高的季节倒挂率高于其他季节,夜间倒挂率高于昼间,雾霾等重污染天气时高于其他时段.数据采集频率、监测方法、监测仪器、采样管加热方式不同以及测量误差等都是产生倒挂现象的因素.  相似文献   

7.
浅析环境空气中TSP与PM10的关系   总被引:2,自引:0,他引:2  
随着国家大气污染监测指标的变动,我们长期积累起来的环境空气监测历史资料出现了断层,为弥补这一问题的出现.该文使用数理统计模式.就环境空气中TSP与PM10之间的转换规律做了一定深度的探讨,并得到了较为理想的结果.  相似文献   

8.
根据哈尔滨市2002-2006年的监测数据,建立了大气PM10的灰色GM(1,1)预测模型。结果表明:预测模型具有较高的精度,未来3年哈尔滨市PM10总体变化呈下降趋势。  相似文献   

9.
根据2006-2011年静安区PM2.5连续自动监测数据,通过对其浓度变化特征进行趋势性分析发现,2006-2011年静安区环境空气中PM2.5浓度呈逐步下降趋势,但浓度年均值仍超过国家环境空气质量二级标准限值.PM2.5污染季节变化特征明显,冬春较高、夏秋较低.PM10与PM2.5的回归方程为y=1.5585x+0.0108,相关系数为0.78,显著性水平为0.01.PM2.5与PM 10浓度的比值(p)主要集中在0.5-0.7之间.  相似文献   

10.
文章选取MODIS数据,利用暗像元算法反演得到气溶胶光学厚度,利用BP神经网络算法通过网络训练和验证,得出PM10浓度遥感监测模型。利用该模型反演得到贵州省2014年3、7、10、12四个典型月份的PM10浓度值。结果表明模型训练和验证PM10浓度模拟值与实测值相关性系数(r)分别为0.76和0.62,利用此模型监测贵州省PM10近地面浓度是可行的;贵州省夏、秋季PM10浓度较低,春、冬季PM10浓度较高;贵州省的PM10浓度整体较低,空气质量较好。  相似文献   

11.
北京市区春夏PM2.5和PM10浓度变化特征研究   总被引:2,自引:0,他引:2  
通过对北京市2012年3月~6月PM2.5和PM10实时数据的整理和分析,结果表明,北京市区大气中细颗粒物PM2.5和可吸入颗粒物PM10浓度日变化趋势基本相同,PM2.5和PM10存在显著或极显著的正相关关系;3月~6月,PM2.5浓度随季节变化逐渐升高,PM10的浓度随季节变化先升高后减小;3月~6月PM2.5与PM10日平均浓度分别为62.77μg/m3和133.88μg/m3,分别为国家二级标准的83.69%和89.25%。  相似文献   

12.
基于ELPI的南京城区大气可吸入颗粒物现状分析   总被引:1,自引:2,他引:1  
采用电称低压冲击器(ELPI)对南京城区可吸入颗粒物粒径分布和质量浓度进行连续在线测量,得到了南京城区大气可吸入颗粒物的日变化特征,表明其呈现双峰、双谷分布,夜间高,白天低,上午高,下午低;结合气象参数,研究了大气可吸入颗粒物浓度变化与气象因子的相关性;此外,对可吸入颗粒物粒径分布特征也进行了研究,可以看出,南京地区可吸入颗粒物的主要成分是细颗粒(PM2.5),粒径在0.028~2.31μm的颗粒物占可吸入颗粒物的98%~99%。  相似文献   

13.
根据污水厂日报表中的数据分别建立了ARMA、逐步回归分析、基于回归分析的神经网络模型和基于时间序列分析的神经网络模型,通过比较选择了基于时间序列分析的神经网络模型作为对污水厂出水COD的预测模型,其平均预测精度为85%,取得了满意的预测结果,有利于克服根据在线监测调整工艺参数的滞后性的缺陷,保证出水水质.  相似文献   

14.
张宝刚  刘鸣 《上海环境科学》2010,29(2):52-54,65
因夜间天空亮度分布具有非线性变化特点,故引入神经网络算法,建立基于时间序列的夜天空亮度预测模型,夜天空亮度预测模型可为城市光污染防治提供评价依据.文章对神经网络的原理进行了论述,建立了基于时间序列预测模型.以测试数据为训练样本集,基于MATLAB(矩阵实验室,Matrix Laboratory的简称),采用改进的BP算法(误差反向传播算法)对网络进行学习训练,并对存在的误差进行了分析.基于时间序列BP神经网络的夜天空预测模型,当隐含层神经元数目为5,训练函数为L-M优化算法(trainlm)时,最大绝对误差可达到0.003 6 cd/m2,最大相对误差达到2.361 4%.结果表明,模型的运行结果与试验数据比较吻合,输出与目标矢量之间相关性也较好.  相似文献   

15.
通过分析徐州市近几年的大气PM10监测数据和气象条件,研究了大气PM10质量浓度的时间变化规律及气象因素的影响,结果表明:PM10质量浓度年变化呈"冬重夏轻"的规律;在大气污染源数量和污染物排放量相对稳定的情况下,风和降水是影响大气颗粒物污染程度的主要气象因子,PM10浓度随温度的升高而降低,随气压的增强而减少。  相似文献   

16.
为研究廉江市大气颗粒物污染特征,于2014年11月~12月采集TSP、PM10、PM2.5样品,用重量法分析质量浓度,并对相关性进行分析.结果表明,用环境空气质量标准(GB 3095-2012)来衡量,廉江市冬季大气颗粒物TSP、PM10、PM2.5的日均浓度均符合标准,环境空气状况良好;三个代表性采样点在监测周期内TSP、PM10、PM2.5的浓度变化趋势大体一致,监测结果能客观反映该区域颗粒物的污染状况;PM2.5与PM10,PM10与TSP之间均存在着显著相关性,回归方程相关性较好.  相似文献   

17.
利用均匀分布于烟台市区的10个空气自动监测点位2013年的数据研究了PM10和PM2.5浓度的季节性变化特征.对PM10 、PM2.5质量浓度分别进行了月均值和季节性均值变化特征分析,研究了不同季节和雾霾天气情况下,PM2.5在PM10中含量的变化情况.结果表明:烟台市区细颗粒物污染较严重,各采样点各月均值中超过二级标准的比例达到88.3%;2013年烟台市区PM 10、PM2.5质量浓度均呈现出春冬季节较高、夏秋季节较低、采暖季明显高于非采暖季,PM10浓度风沙季明显高于其他季节的特点;PM2.5对PM10的贡献呈现明显的季节性变化规律,在雾霾天气情况下明显偏高.  相似文献   

18.
机动车行驶条件、路况与道路二次扬尘中PM10浓度有密切的关系。通过对它们设计正交试验和多元回归统计分析,得到PM10浓度计量模型:ρ=0.0314W0.8248v0.537q0.7021M0.357,该方程具有99%的置信度,且拟合的较好。经回归系数显著性检验,自变量对因变量的影响均极为显著,其显著性大小依次为:道路路面粉尘负荷、机动车车型、车速和车流量。最后采用实测值与模型计算值间的均方差对模型进行验证,结果表明该模型具有较高的可信度。  相似文献   

19.
天津市PM10中元素的浓度特征和富集特征研究   总被引:3,自引:2,他引:3  
为了解天津市大气PM10中元素的浓度水平和污染元素的来源,在天津市布置了7个采样点,获得了风沙季、非采暖季和采暖季19个元素的监测数据。结果表明:Ni、Pb、Cu、Cr是PM10中的主要超标污染元素;K、Ca、Na、Mg、Al、Si、Fe、Ti等8种元素是PM10浓度的主要贡献率元素(92%);19个元素的富集系数风沙季明显低于非采暖季;Co、Cu、Zn、Br、Pb五个元素各季和各站的富集系数均大于10,人为源贡献大于自然源,是环境治理的重点元素。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号