首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper outlines a novel approach to the modeling and analysis of impact involving multibody systems. This approach is based on an analysis of energy absorption and restitution during impact, using a decomposition of the kinetic energy, which decouples the parts associated with the spaces of admissible and constrained motions of the underlying unilateral constraints. Such a decomposition turns out to be useful in the analysis of energy dissipation during impact, and leads to a generalized definition of the energetic coefficient of restitution, which targets particularly collisions in multibody systems. The applicability of the approach reported is investigated by conducting an experimental study on a robotic testbed. It is shown that impact between multibody systems is considerably affected not only by the local dynamics characteristics of the interacting bodies, but also the configuration of the whole multibody system. The results reported here show that our decomposition can offer a sound characterization of impact in several problems of multibody systems.  相似文献   

2.
Modeling mechatronic multibody systems requires the same type of methodology as for designing and prototyping mechatronic devices: a unified and integrated engineering approach. Various formulations are currently proposed to deal with multiphysics modeling, e.g., graph theories, equational approaches, co-simulation techniques. Recent works have pointed out their relative advantages and drawbacks, depending on the application to deal with: model size, model complexity, degree of coupling, frequency range, etc. This paper is the result of a close collaboration between three laboratories, and aims at showing that for “non-academic” mechatronic applications (i.e., issuing from real industrial issues), multibody dynamics formulations can be generalized to mechatronic systems, for the model generation as well as for the numerical analysis phases. Model portability being also an important aspect of the work, they must be easily interfaced with control design and optimization programs. A global “demonstrator”, based on an industrial case, is discussed: multiphysics modeling and mathematical optimization are carried out to illustrate the consistency and the efficiency of the proposed approaches.  相似文献   

3.
4.
A methodology of modeling and analysis of planar mechanical systems is developed based on graph theoretic methods, with improvements in component models. The system model based on cutset and circuit topologies is used to derive a new hybrid cutset-circuit method of formulation of the equations of motion for planar systems. Computer-aided formulation is based on analysis of the substitution procedure mandated by the hybrid cutset-circuit formulation. A new graphical representation of the formulation process is introduced: substitution graphs. No special programming is needed for computer-aided formulation which can be achieved in a symbolic form using the off the shelf Maple symbolic mathematics system. Symbolic formulation requires only inputting the systems equations in an order and form as derived from the analysis of the hybrid formulation. An algorithm for symbolic formulation using Maple is given. A compact set of differential-algebraic equations results, which can be solved numerically. Some simple systems will result in closed-form solutions. A number of examples are given to illustrate the modeling and formulation. Numerical solutions are also given to demonstrate the effectiveness and correctness of the formulation procedure  相似文献   

5.
This paper presents a discretization procedure for the flexible multibody modeling of reeving systems. Reeving systems are assumed to include a set of rigid bodies connected by wire ropes using a set of sheaves and reels. The method is capable to model the deformation of the varying-length wire-rope spans. Wire ropes are assumed to deform axially, transversally and in torsion. This paper shows the capability of the presented method to model transverse vibrations. The discretization procedure uses a combination of absolute position coordinates, relative-transverse deformation coordinates and longitudinal material coordinates. Each wire-rope span is modeled using a single two-noded element under an arbitrary Lagrangian–Eulerian approach. The discretization method is validated using analytical and numerical reference solutions found in the literature that describe the dynamics of varying-length strings. In addition, the dynamics of a three-dimensional tower crane is simulated.  相似文献   

6.
Rigid-elastic modeling of meshing gear wheels in multibody systems   总被引:1,自引:0,他引:1  
In many applications in mechanical engineering, gear wheels are used to transmit power between rotating shafts and, therefore, the ability to incorporate them into multibody systems and to simulate contact between them has become an essential topic in multibody dynamics.However, in some applications gear wheels may not be considered as being perfectly rigid. Due to the effect of contact forces there occur relevant deformations in meshing teeth and it is required for a high quality of the analysis to introduce some elasticities in the model of meshing gear wheels. Therefore, in this work elastic elements between the teeth and the body of each gear wheel are considered. This approach is especially well suited for multibody systems since it is a compromise between a totally rigid model and a fully elastic model allowing the simulation of large motions with many revolutions while still important elasticities are considered. The teeth and the body of each gear wheel are still modelled as being rigid but they are connected to each other by elastic elements. In doing so, an efficient and physically motivated algorithm is described and implemented in order to find the effects of multi-tooth contact as well as backlash and left and right hand side contact of the meshing teeth. Some examples compare the simulation results of rigid, partially elastic and fully elastic models.  相似文献   

7.
In this paper, structural controllability of a leader–follower multi-agent system with multiple leaders is studied. A graphical condition for structural controllability based on the information flow graph of the system is provided. The notions of p-link and q-agent controllability in a multi-leader setting are then introduced, which provide quantitative measures for the controllability of a system subject to failure in the agents and communication links. The problem of leader localization is introduced, which is concerned with finding the minimum number of agents whose selection as leaders results in a p-link or q-agent controllable network. Polynomial-time algorithms are subsequently presented to solve the problem for both cases of undirected and directed information flow graphs.  相似文献   

8.
9.
A non-penetration approach of frictional contact analysis is presented for modeling revolute clearance joints of planar rigid multibody systems. In the revolute clearance joint, the motion modes of the journal are divided into three categories, namely, the free motion, collision, and permanent contact modes. The switch between different contact modes is identified by the state of the journal and bearing, including the gap and the normal relative velocity. When impact in the revolute clearance joint is detected, the collision process is simulated by the impulse-based differential approach, where Stronge’s improved model for restitution is employed to determine the relative velocity after impact. Instead of algebraic equations, the impact process is described by a set of ordinary differential equations (ODEs), which avoids solving complementarity problems. Moreover, in the permanent contact mode, the constraint-based approach and modified Coulomb’s friction law are adopted. The permanent contact mode maintains for most of the time and the governing ODEs are non-stiff. There is general agreement that the constraint-based approach is more efficient than the force-based method. A slider–crank mechanism with a revolute clearance joint is considered as a demonstrative application example where the comparison with the continuous contact force model is investigated.  相似文献   

10.
This paper is devoted to the generic observability analysis for structured bilinear systems using a graph-theoretic approach. On the basis of a digraph representation, we express in graphic terms the necessary and sufficient conditions for the generic observability of structured bilinear systems. These conditions have an intuitive interpretation and are easy to check by hand for small systems and by means of well-known combinatorial techniques for large-scale systems.  相似文献   

11.
Javad Lavaei  Amir G. Aghdam   《Automatica》2007,43(12):2129-2133
This paper deals with the decentralized pole assignability of interconnected systems by means of linear time-invariant (LTI) controllers. A simple graph-theoretic approach is proposed to identify the distinct decentralized fixed modes (DFMs) of the system, i.e., the unrepeated modes which cannot be moved by means of a LTI decentralized controller. The state-space representation of the system is transformed to the decoupled form using a proper change of coordinates. For any unrepeated mode, a matrix is then computed which resembles the transfer function matrix of the system at some point in the complex plane. A bipartite graph is constructed accordingly in terms of the computed matrix. Now, the problem of verifying if this mode is a DFM of the system reduces to checking if the constructed graph has a complete bipartite subgraph with a certain property. The sole restriction of this work is that it is only capable of identifying the distinct DFMs of a system. However, it is axiomatic that most of the modes of the real-world systems are normally distinct. The primary advantage of the present paper is its simplicity, compared to the existing ones which often require evaluating the rank of several matrices.  相似文献   

12.
13.
This article uses the piecewise model and Kane’s method to present a procedure for studying impulsive motion of multibody systems. Impulsive motion occurs when the system is subject to either impulsive forces or impulsive constraints, or when subjected to both simultaneously. The Appellian classification of impulsive constraints and the corresponding equations of impulsive motion of the multibody system are discussed. The governing equations are derived based upon multibody formulation procedures developed by Huston. Constraint impulses associated with finite and impulsive constraints are incorporated into impact dynamical equations through the impulsive Lagrange multipliers. The kinetic energy change of the scleronomic multibody system due to the impact is derived. Newton’s impact law is treated as an impulsive constraint equation to study single-point frictionless collision between two multibody systems. Several examples are used to demonstrate and validate the procedure.  相似文献   

14.
15.
In this paper, using a graph-theoretic approach, we address some issues related to the fault detection and isolation for structured bilinear systems. Considering a structured bilinear system submitted to faults and disturbances, we give necessary and sufficient conditions to the solvability of the so-called bilinear fundamental problem of residual generation. We also treat the cases where the system is submitted to multiple failures occurring simultaneously or only one at a time. One of the main advantages of the proposed analysis tool is that all the given conditions are easy to check because they deal with finding paths in a digraph. This makes our approach well suited to studying large scale systems.  相似文献   

16.
The origins of concept modeling are in the field of artificial intelligence. This is where the initial algorithms were introduced first. With the emerging developments in the field of multimedia systems, a strong need is generated to examine and implement concepts-based retrieval of multimedia-contents, from large data bases or from the Internet. The early works were based on appropriate modifications of classical approaches. The latest developments utilize the algorithms that make sense only in the case of multimedia systems. This paper presents a number of classical approaches to concept modeling and their applicability to multimedia. Then it discusses a number of approaches introduced specifically for multimedia. Finally it presents an approach which was fully implemented and tested in an academic environment for industry needs.  相似文献   

17.
This paper deals with the state and input observability analysis for structured linear systems with unknown inputs. The proposed method is based on a graph-theoretic approach and assumes only the knowledge of the system's structure. Using a particular decomposition of the systems into two subsystems, we express, in simple graphic terms, necessary and sufficient conditions for the generic state and input observability. These conditions are easy to check because they are based on comparison of integers and on finding particular subgraphs in a digraph. Therefore, our approach is suited to study large-scale systems.  相似文献   

18.
An active pulse control method is developed to reduce the vibrations of multibody systems resulting from impact loadings. The pulse, which is a function of system generalized coordinates and velocities, is determined analytically using energy and momentum balance equations of the impacting bodies. Elastic components in the multibody system are discretized using the finite element method. The system equations of motions and nonlinear algebraic constraint equations describing mechanical joints between different components are written in the Lagrangian formulation using a finite set of coupled reference position and local elastic generalized coordinates. A set of independent differential equations are identified by the generalized coordinate partitioning of the constraint Jacobian matrix. These equations are written in the state space formulation and integrated forward in time using a direct numerical integration method. Dependent coordinates are then determined using the constraint kinematic relations. Points in time at which impact occurs are monitored by an impact predictor function, which controls the integration algorithms and forces for the solution of the momentum relation, to define the jump discontinuities in the composite velocity vector as well as the system reaction forces. The effectiveness of the active pulse control in reducing the vibration of flexible multibody aircraft during the touchdown impact is investigated and numerical results are presented.  相似文献   

19.
20.
Flexible multibody dynamics (FMD) has found many applications in control, analysis and design of mechanical systems. FMD together with the theory of structural optimization can be used for designing multibody systems with bodies which are lighter, but stronger. Topology optimization of static structures is an active research topic in structural mechanics. However, the extension to the dynamic case is less investigated as one has to face serious numerical difficulties. One way of extending static structural topology optimization to topology optimization of dynamic flexible multibody system with large rotational and transitional motion is investigated in this paper. The optimization can be performed simultaneously on all flexible bodies. The simulation part of optimization is based on an FEM approach together with modal reduction. The resulting nonlinear differential-algebraic systems are solved with the error controlled integrator IDA (Sundials) wrapped into Python environment by Assimulo (Andersson et al. in Math. Comput. Simul. 116(0):26–43, 2015). A modified formulation of solid isotropic material with penalization (SIMP) method is suggested to avoid numerical instabilities and convergence failures of the optimizer. Sensitivity analysis is central in structural optimization. The sensitivities are approximated to circumvent the expensive calculations. The provided examples show that the method is indeed suitable for optimizing a wide range of multibody systems. Standard SIMP method in structural topology optimization suggests stiffness penalization. To overcome the problem of instabilities and mesh distortion in the dynamic case we consider here additionally element mass penalization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号