首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
空位是一种点缺陷,广泛存在于非化学计量比的半导体光催化材料的晶格中.不同于其它研制复杂结构和组成的新型光催化剂的策略,空位工程设计方法可以基于传统的,由丰量元素组成的光催化剂进行表面或体相晶格的空位调控,以获得宽谱响应的高效光催化材料.该方法具有不引入杂质元素、成本低廉、方法简便等优点,且通过表面化学吸附作用可以耦合热催化和光催化过程,以实现增强的选择性光催化反应.空位的表征技术包括元素分析,扫描隧道显微镜,催化发光,光致发光或顺磁共振等直接和间接观测技术.近期正电子湮没谱发展成为一种研究空位的重要手段.这种方法可以区分不同位置(如体相和表面)和不同形式(如单一空位或联合空位)的空位并确定其相对浓度,从而用于探索空位影响光催化活性的规律.氧、氮、硫和卤素原子空位均属于阴离子空位.氢化处理法可以在光催化剂晶格中形成高浓度氧空位,并导致纳米材料表面层的晶格混乱.处理后光催化剂的光学吸收拓展到近红外区,电子给体浓度大大提高,促进了电子输运和界面电荷的迁移与分离;然而,可见光区的吸收对增强的光催化活性没有贡献.氧空位还可以作为活性位点吸附和解离反应物,促进电子从催化剂到吸附质间的转移,甚至直接参与到光催化和光化学反应中.富含氧空位的WO3可以耦合热催化和光催化反应促进CO2的选择性还原,或者利用近红外光活化分子氧并选择性氧化胺.氮空位是含氮的n型半导体光催化材料的本质属性.石墨氮化碳中的氮空位有助于促进电荷分离,同时可以作为化学吸附位用于选择性吸附,活化和还原氮气,因此富含氮空位的光催化剂在还原含氮化合物方面具有应用潜力.由于卤素原子在层状卤氧化铋的层间以较弱的范德华力存在,该类化合物容易形成卤原子空位.通过热处理碘氧化铋可以获得活性增强的含碘空位化合物.空位的出现导致带隙变宽和价带下移,光生空穴氧化能力提高,从而获得更好的光催化活性.传统的n型半导体光催化剂中难以形成阳离子空位.理论研究表明,含阳离子空位的TiO2具有一系列优点,包括电子传输性能提高,载流子复合受到抑制等.并且钛空位可以作为表面活性位促进水的吸附和离解,从而提高光解水效率.含钛空位的p型TiO2可以通过焙烧甘油化的前驱体制备,钛空位的出现使得光解水和催化降解有机物活性均大幅提高.含碳空位的石墨氮化碳不仅表现出增强的光催化活性,同时能够提高氧吸附并促进两电子还原氧气产生H2O2的反应过程.铋空位能够有效提高铋基光催化剂BiPO4和Bi6S2O15的活性.二维纳米材料的晶面和厚度可以影响表面空位的组成和浓度.BiOCl纳米片的表面是以铋空位为主,而超薄的BiOCl纳米片则是以铋氧联合空位为主,从而表现更优异的光催化活性.最近研究者在含空位的高性能光催化剂制备以及性能调控规律方面取得了长足进展,今后还将继续发展先进的表征技术,进一步研究空位的调控和稳定化手段,并全面理解空位对光催化反应的影响基本规律.空位工程将在半导体光催化技术中发挥更加重要的作用.  相似文献   

2.
金属催化剂在工业、环境、能源以及生物等过程具有重要的应用.设计具有特定活性、环境友好型以及室温下具有反应活性的催化剂,需要在分子水平对金属催化剂的基元步骤,活性位点的结构以及催化反应微观机理有充分的认识.然而,由于宏观催化剂表面结构异常复杂,催化反应常受到溶剂、压力、金属颗粒团聚、催化剂表面缺陷等因素的干扰,利用现有实验仪器,从微观角度探索金属催化反应机理仍具有较大挑战,因此,对金属催化剂活性位的结构以及反应微观机理的认识还不十分清楚.质谱方法结合现代量子化学理论计算,提供了在气相条件下实验探索化学反应微观机理的有力工具,团簇反应可在隔离外界条件、可控以及可重复条件下进行,可以排除一些难以控制因素的干扰,可在化学键和分子结构水平认识金属活性位的结构以及催化反应的微观机理.气相金属团簇离子可用多种实验方法制备,与反应物分子反应后可利用多种质谱仪器探测,根据实验上所得的具有反应活性的团簇,结合现代量子化学理论模拟,得到金属催化反应的基元步骤以及微观反应机理信息,所得反应机理信息为宏观催化剂的设计提供重要理论研究基础.本综述总结了团簇实验上已经探测到的金属单原子离子、金属团簇、金属氧化物团簇和金属化合物催化的气相反应.反应物分子囊括了大量的无机和有机分子,包括CO,H_2,CH_4,C_2H_2,C_2H_4,C_6H_6,CH_3OH,HCOOH,CH_3COOH等.本综述主要介绍了以下三类催化反应:(1)CO催化氧化;(2)CH4催化转化;(3)催化脱羧反应,并重点关注贵金属单原子掺杂团簇独特的催化反应性.单原子催化剂可最大限度地利用有限的贵金属.在化学反应方面,单原子催化剂具有特异的反应活性,选择性以及稳定性.本综述对气相团簇反应中报道的两个重要的贵金属单原子掺杂团簇的催化反应进行了详细介绍:(1)金原子掺杂的Au Al_3O_(3-5)~+团簇为首次报道的可以利用分子氧催化氧化CO的团簇单原子催化剂,我们对Au原子起催化作用的本质原因进行了介绍:(2)铂原子掺杂的Pt Al_3O_(5-7)~-团簇能利用分子氧催化氧化CO,该研究提出了"电负性阶梯"效应来解释Pt原子催化的微观机理,且此效应有望对大部分贵金属适用.此外,本综述对CO催化氧化反应和CH_4催化转化反应的研究现状以及尚未解决的问题进行了剖析.相比CO的催化氧化反应,科学家对CH4催化转化反应机理的认识还不够深入,还需要进一步实验研究,而团簇单原子催化剂有望在此领域有所突破.  相似文献   

3.
许多化学反应中都存在一个被定义为诱导期的起始反应速率较低的阶段,例如一些自由基反应、放热反应和催化反应。与之相比,在极少数的催化反应中研究者观察到一个反应速率始终为零的特殊阶段,在这个阶段之后反应自发开始。这两种阶段形成的原因与反应的机理尤其是催化剂的活化和失活有关。然而,这两个具有明显不同特征的阶段往往被混淆。本文通过所选取的一些代表性的催化反应分别介绍了诱导期和休眠期的动力学特征,讨论了两者之间的区别。期待这些隐藏在稳态催化循环之前的阶段能够得到更多的关注,这将有利于研究人员深度理解有机化学反应中的前催化循环和详细的反应机理。  相似文献   

4.
高效氧催化反应中的金属有机骨架材料(英文)   总被引:1,自引:0,他引:1  
氧电催化反应包括氧气还原反应(ORR)和氧气析出反应(OER).作为核心电极反应,这两个反应对诸多能源存储与转换技术(比如燃料电池、金属空气电池以及全水分解制氢等)的能量效率起决定性作用.然而,ORR和OER涉及多个反应步骤、多个电子转移过程以及多相界面传质过程.这些复杂的过程较大程度上限制了ORR和OER的反应速率.从理论和实践两个方面来看,ORR和OER都需要高效电催化剂的参与来促进其反应速率,从而能够最终提高上述能源存储与转换技术的能量转换或利用效率.目前,以Pt,Pd,Ir,Ru为代表的贵金属基电催化剂具有十分突出的电催化性能.但是,过高的成本和过低的储量始终制约着贵金属基电催化剂在催化ORR和OER反应方面,乃至在能源存储与转换技术领域的规模化应用.因而,开发高效非贵金属基氧电催化剂成为近年来能源存储与转换领域的研究重点之一.在众多已经报道的非贵金属基氧电催化剂中,金属有机骨架材料(MOFs)备受瞩目.MOFs是一类由有机配体和金属节点通过配位键自组装而成的晶态多孔材料.它们具备超高比表面积、超高孔隙率以及规则性纳米孔道.相比较其他传统的多孔材料(比如活性炭、分子筛、介孔炭、介孔氧化硅等),MOFs最主要的优势在于它们的结构和功能可以依据需求通过选择合适的有机配体和金属节点进行便利地设计,或通过后处理进行必要的改性和调节.基于独特的多孔特性以及结构与功能的可设计、可调节性,MOFs在气体分离与存储、异相催化、化学传感、药物输送、环境保护以及能源存储与转化等领域都具有潜在的应用价值.因而,近年来,MOFs备受基础研究领域和工业界的青睐.针对MOFs开展的基础研究和应用开发逐渐成为诸多领域的研究焦点.也正由于MOFs具有的上述优异特性,尤其是结构与功能的可设计、可调节性,使得设计制备基于单纯MOFs以及MOFs衍生材料成为开发高效非贵金属基氧电催化剂的新途径.本综述首先论述了基于单纯MOFs的氧电催化剂(包括纯MOFs、活性物种修饰的MOFs以及与导电材料构成的复合MOFs)的合成以及它们在ORR或OER催化反应中应用的研究进展.在第二部分论述中,本综述主要针对MOFs衍生的各类氧电催化剂(包括无机微米-纳米结构/多孔碳复合材料、纯多孔碳材料、纯无机微米-纳米结构材料以及单原子型电催化材料)的研究进展进行了简要介绍和讨论.最后,本综述对MOFs基氧电催化剂目前存在的挑战进行了简要分析;同时,也对这类氧电催化剂的通用设计准则以及未来发展方向进行了展望.尽管存在诸多挑战,MOFs始终被认为是极好的"平台"材料.充分利用它们将有利于开发高效且实用的非贵金属基氧电催化剂.  相似文献   

5.
析氧反应(OER)是金属-空气电池、电解水等绿色可再生能源转换与储存系统的核心反应,其复杂的4电子-质子耦合反应导致其动力学过程缓慢从而使得系统过电位较高,目前主要依赖于RuO2或IrO2贵金属催化剂提升其反应速率,但贵金属高成本和低稳定性严重限制其大规模应用.因此,开发高活性、高稳定性的廉价非贵金属催化剂具有重要的实际意义,已成为现阶段的研究热点.钼酸钴(CoMoO4)作为典型的ABO4型催化材料,不仅价格低廉、储量丰富,而且其双金属特性可构筑有效的活性位点提升OER反应动力学.前期研究发现,通过阴离子掺杂、氧空位工程、电子结构调控、表面修饰等策略可增强ABO4型催化剂的OER催化活性.特别是氧空位工程可调节过渡金属氧化物的电子结构,提高其导电性能,增加催化位点活性,从而提高过渡金属氧化物的催化性能.本文在石墨毡(GF)上原位生长CoMoO4纳米片,并提出一种简单的H2/Ar还原策略精确调控CoMoO4的氧化状...  相似文献   

6.
使用大规模自旋极化密度泛函理论计算研究了表面修饰和尺寸对金刚石纳米线(DNs)中氮空位(NV)色心的几何结构、电子结构、磁性和稳定性的影响.理论上设计了几种不同的DNs,这些DNs具有不同的表面修饰(干净、氢化和氟化),并且直径达数百个原子.实验结果证明,中性(NV0)和带1个负电荷(NV-)的NV色心的电子结构不受半导体表面修饰和DNs直径大小的影响,但NV色心的稳定性对这两个因素具有不同的响应.此外,研究中还发现,由于DNs中存在圆柱形表面电偶极子层,对DNs中掺杂的NV-色心的稳定性,表面改性诱导了不依赖尺寸的长程效应.特别地,对于n型氟化金刚石表面,掺杂在DN中的NV-色心可以稳定存在,而对于p型氢化表面, NV0则相对更稳定.因此,表面修饰为控制金刚石纳米线中的NV色心的电子结构和稳定性提供了一种精确有效的调控方法.  相似文献   

7.
作为培养应用型人才目标的新尝试,从研究性教学的理念出发,设计了太阳光诱导可逆加成-断裂链转移(RAFT)聚合的综合性高分子化学实验教学项目。该实验应用太阳光辐照,在仅添加S-十二烷基-S'-(α,α″-甲基-α″-乙酸)三硫代碳酸酯的情况下,进行了2-乙烯基吡啶的RAFT聚合实验。实验巧妙地将太阳光应用在RAFT聚合实验中,该实验具有实验现象明显和操作简单易行的优点。  相似文献   

8.
烷烃是石油化工行业排放的一类重要的人为污染物.烷烃排放到大气后,很容易与大气中的活性物质发生反应,转化为复杂的臭氧和有机气溶胶等二次污染物.而这些二次污染物对大气环境和人类的负面影响更为显著.因此,有效地消除排放源中的烷烃以实现对大气环境和人类健康的保护是迫切需要的.近些年来,基于太阳光和Bi基半导体的光催化降解气相污染物受到了研究人员的广泛关注.然而,目前有关光催化在气相直链烷烃净化中的应用仍然很少.本文采用溶剂法合成了一系列Bi/BiOBr复合材料,并将其应用于太阳光催化降解典型的气相直链烷烃正己烷.XRD, SEM和TEM表征结果表明,反应溶剂中官能团数量的增加(从甲醇、乙二醇到甘油)和溶剂热温度的提高(从160, 180到200℃)均有助于实现具有(110)暴露面的BiOBr纳米板上金属Bi纳米球的原位修饰.同时Raman和XPS表征结果表明, Bi与BiOBr在(110)暴露面上形成了化学键,进而导致表面氧空位形成.在实验室自制的光催化反应器中研究了Bi/BiOBr复合材料的太阳光催化降解正己烷性能.120 min的降解反应结果表明,适量金属Bi原位修饰有利于促进BiOBr对...  相似文献   

9.
对水体中酚类等难降解有机污染物进行深度矿化处理,实现无毒无害排放,是提高环境质量,实现可持续发展的关键.如何高效去除水体中难降解有机污染物不仅是环境化学污染控制的研究热点,也是制约工业废水回用的技术瓶颈.光催化可直接利用太阳光实现污染物的深度矿化和无毒无害排放,为该难题的解决提供了新思路.但对传统无机光催化剂而言,光利用率低、降解速率慢和净化通量低制约了其实际应用.本文总结了本课题组在利用有机光催化剂降解污染物时提出的三个策略,以进一步推动光催化污水处理技术的实际应用.针对可见光利用效率低的难题,发展了一系列有机超分子等新型光催化剂.通过对共轭结构(生色基团)和侧链基团(助色基团)的调控,实现了对最高被占分子轨道(HOMO)和最低未占分子轨道(LUMO)能级位置以及吸光能力的调控,有机半导体光催化剂的降解催化活性可拓展到近红外段,实现了污染物在太阳光下的降解和深度矿化.光生空穴可将酚类和抗生素等难降解污染物完全矿化成CO2和水,建立了可见光下有机半导体光催化剂深度矿化净化水中难降解有机污染物的新方法.通过构建分子内供体受体(DA)结构和分子间供体-受体(D-A)界...  相似文献   

10.
随着化石燃料的减少和能源危机的加重,开发利用可再生的新能源迫在眉睫.生物质作为一种重要的可再生资源,是现代化学工业中的能源和有机碳的重要潜在替代物,将其转化为高附加值化学品具有巨大的开发潜力和实际应用价值.因此,对于生物质资源的高效转化及综合利用越来越受到人们的广泛关注,而催化化学转化是当前实现生物质升值利用的重要途径之一.近年来,磷酸锆逐渐发展成为一种新型的过渡金属磷酸盐多功能材料,在离子交换,吸附,质子传导,光化学,材料化学,催化等领域具有广泛的应用.根据我们和其他课题组的研究基础,本文简要总结了无定形、介孔和结晶型磷酸锆(α、γ、τ)特别是α-磷酸锆材料的制备方法,结构和催化性能.在其结构中,不同的磷氧基团和水分子,锆氧八面体和磷氧四面体通过氧桥相互连接在一起.在特定的制备条件下,可以得到无定形磷酸锆、层状结构的α/γ-磷酸锆或者三维结构的τ-磷酸锆.磷酸锆材料具有极高的热稳定性,优异的耐水能力,且在极性介质(包括水相)中仍然能够显示出中强酸性,不仅具有布朗斯特酸性和路易斯酸性,而且通过控制磷和锆的比例可以调节两种酸的浓度.本文重点介绍了磷酸锆催化剂在生物质平台分子转化(如催化脱水,加氢/氢解,氧化和酯化等)反应中的最新研究进展,特别指出,磷酸锆表现出的高热稳定性,耐水性和中强酸性使其成为具有高活性、高稳定性的多相催化剂.已有研究表明,磷酸锆既可以直接作为固体酸催化剂,也可以将其它金属及其氧化物等活性组分负载于酸性磷酸锆上,可构建包含酸中心、金属中心的多功能催化剂,实现酸催化、加氢、氧化等多步反应,从而应用于由生物质平台分子制取燃料或者精细化学品催化转化过程.总之,磷酸锆用于生物质转化已经取得了一些重要的进展,也是目前该领域的研究热点之一.虽然已有很多磷酸锆催化剂的研究工作,但是在该领域仍然需要更加深入和广泛的研究.在了解催化反应机理的基础上,更加精确设计、改良催化剂的结构,高效应用在生物质转化以及其他催化反应中.  相似文献   

11.
采用沉积-沉淀法制备了TiO_2负载的Au-Ir和Au-Ru催化剂,用于乙酰丙酸加氢制γ-戊内酯反应,并与相应的单金属催化剂性能进行了比较.有趣的是,Ir/TiO_2中添加Au抑制了催化剂活性,而添加Ru则表现出正效应的协同作用.这两个催化剂均在H_2中还原,使得M~0–Au~0间相互作用增强.结合以前的密度泛函理论计算和催化反应结果,我们认为,Au-Ir/TiO_2催化剂活性低于Ir/TiO_2催化剂是由于Au影响了Ir原子的氧化还原过程.  相似文献   

12.
随着能源需求的增加和生态环境的恶化,可再生资源的开发与利用越来越受到人们的重视.其中,生物质能源分布广泛,储量丰富,是化石燃料的理想替代品.然而生物质具有高含氧量、高粘度和低热值等特性,开发高效的加氢脱氧催化剂对生物质资源的开发和利用具有重要的应用价值.近年来,研究者们对生物质(脂肪酸及其衍生物)加氢脱氧催化体系进行了大量研究,发现Ni/CeO2基催化剂能够有效地催化生物质转化并获得较高的生物油产率,然而CeO2载体的氧空位含量与Ni纳米颗粒尺寸、催化剂脱氧性能之间的关系仍然不明晰.本文采用水热合成法和沉淀法分别制备了H-CeO2和P-CeO2载体(商用CeO2标记为C-CeO2),通过浸渍法制备了Ni/H-CeO2, Ni/P-CeO2和Ni/C-CeO2催化剂,同时采用无氧空位的SiO2做载体制备了Ni/SiO2催化剂,研究了CeO2...  相似文献   

13.
过量化石能源的消耗导致大气中的二氧化碳含量不断上升,由此引发包括温室效应在内的环境问题。对此,常温常压下的电催化二氧化碳还原手段为制备高附加值的化工原料和实现碳循环提供了一种很有前景的技术储备。在众多的二氧化碳还原产物中,碳氢化合物尤其是乙烯,它作为塑料和其他化工产品的重要原料受到广泛的关注。电催化二氧化碳还原制乙烯工艺不仅可适配于现有的生产设备也可作为取代目前工业化的裂解方法。近年来,研究者们为了开发高效的电催化二氧化碳还原制乙烯催化剂开展了大量的研究。不过值得注意的是,大部分研究集中于铜基材料。尽管目前研究者取得了很多成果,但仍缺少可高选择性产乙烯的二氧化碳还原催化剂。如何设计出可活化二氧化碳分子,同时对*CO和*COH中间物有强吸附能力的催化剂是研究难点。针对此问题,本文中通过真空蒸镀的方法制备出一种富氧空位的非晶氧化铜纳米薄膜催化剂。受益于纳米薄膜的构建和氧空位的引入,该催化剂可快速进行电荷和物质的交换,并利于二氧化碳分子的吸附及优化还原中间产物的亲和力,进而表现出优异的电催化二氧化碳制乙烯的性能。结果表明,在加有0.1 mol·L-1碳酸氢钾溶液的H型电...  相似文献   

14.
BiOBr具有独特的层状纳米结构和合适的可调节的能带结构,因而广泛应用于光催化领域中.但其可见光催化效率仍需要进一步提高.最近,氧空位调控技术广泛应用于光催化剂改性中.本文研采用溶剂热法(采用水/乙二醇溶液)合成了一系列具有氧空位的BiOBr纳米片.通过改变水/乙二醇的比例调节BiOBr氧空位的量和晶面,以增强其可见光催化活性.虽然有关氧空位在光催化中的作用已有研究,但氧空位对电荷转移和反应物活化影响的机理仍不清楚.因此,本文采用X射线衍射、扫描电镜、透射电镜、荧光光谱(PL)、紫外-可见漫反射光谱(UV-Vis DRS)、电子自旋共振(ESR)、电子顺磁共振(EPR)和比表面积-孔结构(BET-BJH)分析等手段考察了含有氧空位的BiOBr纳米片的物理化学性质,通过原位红外光谱研究了样品可见光催化氧化NO的转化路径及反应机理.同时结合密度泛函理论(DFT)计算进一步揭示氧空位对电子激发、电子-空穴分离和转移、以及光催化氧化反应过程的影响.表征结果表明,采用水/乙二醇混合溶液的方法制得了BiOBr样品(BOB,BOB-1C,BOB-2C,和BOB-3C),其表面氧空位随着混合溶液中乙二醇溶液的增加而增加.另外,BiOBr样品均呈纳米片层状,且随着乙二醇溶液的增加,BiOBr纳米片逐渐组装成紧密结合的球状结构.BET-BJH测试结果显示,BOB-3C的比表面积(15.34 m~2/g)显著高于BOB(1.1 m~2/g).UV-Vis DRS结果表明,BOB-3C具有比BOB更良好的可见光吸收能力.可见光催化去除NO的测试结果表明,BOB-3C的光催化活性(38.9%)明显高于BOB(4.1%).ESR研究发现,BOB-3C能产生比BOB更多的活性氧化物种(·O~–自由基和·OH自由基).由此可见,因表面氧空位浓度的变化,而使BOB和BOB-3C表现出不同的理化特性.同时DFT计算也印证了光催化过程中氧空位对氧气吸附活化、NO吸附氧化和能带结构的影响.可见光催化氧化NO的原位红外光谱表明,BOB-3C与BOB相比,光催化氧化NO的转化路径发生了变化,表明氧空位对NO氧化起到了促进作用.氧空位在光催化中表现出多功能性,包括引入中间能级以增强光吸收,促进电子转移,充当催化反应和氧分子活化的活性位点,促进反应产物转化为最终产物,从而增强样品可见光光催化效率.为揭示氧空位在光催化剂中的作用和光催化NO氧化机理提供了新的思路.  相似文献   

15.
异丁烯用途广泛,被认为是除乙烯和丙烯外最重要的基础化工原料.异丁烯的来源主要是石油裂化过程中产生的碳四馏分,但随着对其需求量的逐年增加,分离法已逐渐无法满足,因此异丁烷直接脱氢工艺逐渐受到工业界和学术界的重视.铬系和铂系催化剂是两类传统工业催化体系,但铬对环境污染严重,铂作为贵金属成本较高,而且现有工艺大多存在催化剂稳定性较差需要反复再生的问题.近年来碳材料用于烷烃氧化脱氢反应的研究较多,并表现出较高的活性和稳定性,甚至有研究组提出金属催化剂在反应中快速生成的活性积碳(active coke)可能是真正的催化活性中心.但氧化脱氢反应不同于直接脱氢,需在反应中加入氧气,这在实际生产中会带来一系列问题:考虑到烷烃的爆炸极限,实际应用时反应气必须稀释,这不利于产物的收集;而且氧气会导致反应物过度氧化产生CO和CO2等副产物,也限制了氧化脱氢工艺在工业上的应用和发展.我们研究组将椰壳碳、煤质碳和碳纳米管等碳材料作为催化剂用于催化异丁烷直接脱氢反应,发现碳催化剂表现出较高的催化活性:在625o C,椰壳碳上异丁烷转化率和异丁烯选择性分别为70%和78%,连续反应3d后仍能维持34%的转化率,且选择性基本不变.与铬基催化剂相比,碳催化剂在稳定性方面表现出更大优势.我们进一步采用N2吸脱附、X射线光电子能谱(XPS)、傅里叶变换红外光谱(FTIR)和场发射扫描电子显微镜(FE-SEM)等手段对反应前后的碳催化剂进行了详细表征.N2吸脱附结果表明,椰壳碳比表面积高达1190.2 m2/g,这可能是其具有较高催化活性的原因;而结合催化剂活性数据,对比反应前后椰壳碳催化剂比表面积和异丁烷转化率可知,两者呈现近乎线性的相关性,进一步证实比表面积大小对碳催化剂催化活性有重要影响.XPS谱图证明椰壳碳在反应前表面除了有少量硅(0.73%)外,不存在金属氧化物等杂质,证实碳材料无需负载氧化物等即可表现出较高的催化活性;反应后沉积的积碳附着在催化剂表面,使硅含量降低至0.47%;催化剂中氧含量也由4.43%降低至3.78%,同时有碳酸盐生成.FTIR谱图进一步证实反应前的椰壳碳表面有丰富的有机官能团,但反应开始后有机官能团很快消失,而催化剂仍保持较高的催化活性,因此有机官能团并非碳催化剂催化活性高的必要因素,这与文献中已报道的结果不同.FE-SEM照片中观察到反应后椰壳碳催化剂表面形成积碳,随着反应时间延长积碳明显增多,这与XPS结果一致.碳材料具有来源广泛、绿色环保等显著优势,可作为一种新的催化体系应用于异丁烷直接脱氢反应,无需负载其他物质或添加氧化性气体即可表现出良好的催化活性和稳定性,其比表面积对催化活性有重要影响,反应中产生的积碳导致催化剂比表面积下降进而降低其催化活性,而有机官能团的存在对催化活性影响不大.  相似文献   

16.
固体和水所形成的界面在各类化学和生物体系中非常常见,围绕相关物化现象的研究也一直是界面科学的前沿热点.然而,多相催化研究中对固-液界面发生的催化转化过程背后的微观机制的认识依旧十分有限,再加上水的诸多特殊理化性质,理解固-水界面的多相催化反应极具挑战性.本综述针对三类代表性的酸碱催化反应(醇类脱水、羟醛缩合和糖类异构),总结了一系列水(包括水分子本身、溶于其中的离子和由水衍生而来的其他物种)在这些体系中对表界面催化行为、反应机理和构效关系的常见影响方式,并批判性地归纳了业已提出的分子层面的观点和解释.当水的化学势较高(液态水或者水分压较大)时,其通常会抑制固体酸碱表面的催化反应,原因可以归结为:水分子在表面活性位上的竞争吸附、对活性位酸碱强度的削弱和对中间物种的溶剂化稳定作用(从而提高活化自由能能垒).水的存在也可造成活性位性质发生变化(例如活性较低的Lewis酸向活性更高的Br?nsted酸转化),或直接/间接开辟新的反应路径,从而提高催化反应速率.此外,最新研究还揭示了活性位和表面反应物种(包括过渡态)溶剂化过程中许多重要的微观现象,包括:水在限域孔道内形成团簇结构和横跨活性位的溶...  相似文献   

17.
电催化合成氨技术以绿色可再生的电能为驱动力,通过在室温条件下改变外加电压来克服速控步能垒,被认为是一种取代哈伯工艺的潜在选择.然而,该技术存在法拉第效率较低、氨气产率不高等问题.因此,设计高效的电合成氨催化剂是目前亟待解决的关键问题.氧官能团的二维过渡金属碳化物和氮化物(MXenes)由于具有独特的几何结构、高导电性和表面易调变等特点,在全水解、碳转化、氧还原或固氮等电催化过程中应用十分广泛.其中,表面氧官能团不饱和覆盖的MXenes材料的电催化合成氨性能较好,这是因为适量的氧空位能够调节活性中心的电荷分布,从而优化关键中间体的结合强度;同时,氧空位的存在为反应提供了足够的活性位点.然而,氧官能团MXenes家族庞大,种类众多,如何从中筛选出合适的合成氨电催化剂尚且缺乏理论指导.本文设计了一系列氧官能团的二维过渡金属碳化物和氮化物(MXenes)作为合成氨电催化剂,并通过密度泛函理论从稳定性、选择性和活性角度出发提出了一套较完善的筛选流程.以纯MXenes表面覆盖17/18氧官能团所需的极限电位来判断氧官能团MXenes的稳定性.通过对催化剂上氮气分子和氢原子的吸附行为进行比较来证明其...  相似文献   

18.
清洁能源在开发和利用过程中存在间歇性和不稳定性,开发高性能、高效率、环保清洁的新型储能器件可保障稳定的能源输出,实现能源转型.其中,金属基电池(如金属-空气电池,金属-硫电池等)具有低成本,高能量密度的优势,具有较高的应用价值.电池电极材料(催化剂)的合理设计影响着其储能效率,对可再生能源技术的发展具有重要作用.近年来,随着研究人员对电催化反应机理的深入理解,缺陷工程被普遍认为是增加催化活性位点数量,提升电池性能的有效策略.其原因在于缺陷可以提供大量不饱和位点,从而为电化学过程提供更多活性中心,增强电极催化效率,实现电化学动力学的提升.此外,缺陷工程实现了电池电极材料局部原子结构以及配位环境的可控调节,进一步调整电极材料的电子和结构特性,可显著提升电池的电化学动力学.本文系统总结了缺陷工程促进电催化性能的可行性策略和金属基电池电催化剂缺陷工程的最新进展.首先介绍了金属-空气电池和金属-硫电池的反应机理,明确金属基电池的反应机理和反应过程对于开发性能优异、环境适应性强催化剂至关重要.其次,归纳和总结了缺陷的种类(本征缺陷、阴离子空位、阳离子空位、晶格畸变和杂原子掺杂)及其引入的常用方法(...  相似文献   

19.
饮用水的微生物污染问题受到越来越多的重视,亟需发展更加安全的饮用水消毒技术.光催化消毒由于其利用取之不尽的太阳光作为能源的特点成为近年来最有潜力的"绿色"杀菌技术,然而传统TiO2光催化只能响应紫外光,并且目前已报道的可见光响应催化剂的杀菌效率仍然较低,不能满足应用需求.表面氧空位修饰是提高光催化剂性能的有效途径,已被证明可提高光催化降解、产氢及CO2还原性能,然而其对于光催化杀菌的增强机制少有研究.WO3由于具备可见光催化性能而受到较多关注,同时研究表明表面氧空位可提高WO3光吸收性能从而增强活性,但氧缺陷型WO3的光催化杀菌性能尚不明确.另一方面,氧缺陷WO3多是通过H2热还原制备或长时间水热反应制备,存在高温易爆、反应时间长等缺点.本文以WO3为例,利用微波辅助溶剂热法合成WO3–x,研究其在可见光下的光催化杀菌性能,探明氧空位对杀菌作用的增强机制,提出针对光催化杀菌的缺陷型催化剂制备策略.研究发现,以乙醇作为溶剂WO...  相似文献   

20.
NiFe基电催化剂在水氧化反应中已经得到了广泛研究,但是,基于多界面修饰对电催化析氧反应(OER)的研究仍然不足.本课题组开发了通过多种碳基界面工程的协同作用来提高NiFe基纳米电催化剂OER性能的方法.在碳纤维纸(CFP)上原位生长碳纳米管以改善CFP和NiFeOxHy之间的界面,同时采用碳复合NiFeOxHy的策略优化NiFeOxHy界面的电荷转移和电子结构.基于这种策略合成的NiFeOxHy-C/CNTs/CFP催化剂在电流密度10 mA cm-2条件下的过电位为202 mV,稳定时间达到72 h,表现出较好的水氧化性能,扫描电子显微镜、透射电子显微镜、场发射透射电子显微镜和X射线衍射等结果表明,CNTs提高了催化剂的分散度,从而暴露了更多的活性位点,碳掺杂改变了催化剂的晶态,导致催化剂无定形化.Raman光谱则证实了掺杂碳是以无定形碳和石墨碳的形态存在.电化学阻抗谱结果表明,碳界面修...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号