首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 203 毫秒
1.
卷积神经网络(convolutional neural network,CNN)是高光谱图像分类中一种常用的方法,有着较好的分类表现。然而,CNN不可避免地会提取出一些冗余特征,这对高光谱图像分类的准确率造成干扰。此外,高光谱图像分类还面临着同谱异物、同物异谱问题。为了解决以上这些问题,提出了一种基于注意力机制辅助空谱联合残差网络的高光谱图像分类方法。一方面,通过使用注意力机制辅助的3-D、2-D残差网络,同时从光谱维度和空间维度提取空谱联合特征,克服同谱异物、同物异谱问题;另一方面,引入通道注意力机制和空间注意力机制,有效降低了冗余空谱特征的干扰。在2种高光谱数据集上的实验结果表明,相比同类对比算法,所提出的方法具有更优越的分类性能。  相似文献   

2.
为了解决简单卷积神经网络(convolutional neural network, CNN)不能有效提取与充分利用高光谱图像特征信息的问题,提出了一种 基于残差网络的多层特征匹配生成对抗网络模型。提出的模型引入残差网络以挖掘高光谱图 像的深层特征,生成可分性更高的高光谱图像,并通过一个特征融合层进行特征融合,充分 利用网络的各层特征。提出的算法在Indian Pines、Pavia University和Salinas数据集 上的分类精度分别达到了97.6%,99.3%,99.1%,与径向基函数支持向量机(radial basis function-support vector machine, RBF-SVM)、堆叠自动编码器(stacked autoencoder, SAE)、深度置信网络(deep belief network, DBN)、PPF-CNN (CNN based on pixel-pair feature)、CNN和三维卷积网络 (three-dimensional convolutional neural network, 3D-CNN)方法相比较,其分类精度具有明显的提高。实验结果表明,提出的方法是一种有效 的高光谱图像分类方法。  相似文献   

3.
关世豪  杨桄  李豪  付严宇 《激光技术》2020,44(4):485-491
为了针对高光谱图像中空间信息与光谱信息的不同特性进行特征提取,提出一种3维卷积递归神经网络(3-D-CRNN)的高光谱图像分类方法。首先采用3维卷积神经网络提取目标像元的局部空间特征信息,然后利用双向循环神经网络对融合了局部空间信息的光谱数据进行训练,提取空谱联合特征,最后使用Softmax损失函数训练分类器实现分类。3-D-CRNN模型无需对高光谱图像进行复杂的预处理和后处理,可以实现端到端的训练,并且能够充分提取空间与光谱数据中的语义信息。结果表明,与其它基于深度学习的分类方法相比,本文中的方法在Pavia University与Indian Pines数据集上分别取得了99.94%和98.81%的总体分类精度,有效地提高了高光谱图像的分类精度与分类效果。该方法对高光谱图像的特征提取具有一定的启发意义。  相似文献   

4.
为了减轻卷积神经网络模型对训练样本的依赖性 和提高高光谱图像的分类性能,本 文提出了一种融合Gabor滤波与3D/2D卷积的高光谱图像分类算法。首先,三维Gabor滤 波器用于处理原始高光谱数据以生成空谱隧道信息;其次,利用三维卷积操作提取生成的 空谱隧道信息的深层特征;然后,再利用二维卷积进一步提取图像的空间信息;最后,通 过Softmax分类器完成高光谱图像分类。为验证模型性能,将提出的方法与CNN、2D- CNN、3D-CNN-LR、SSRN算法在Indian Pines、Pavia University、Salinas数据集上进行 对 比实验。实验结果表明,提出的方法在三个数据集上的总体识别精度分别达到99.51%、99.94%、99.99%,均高于其 他方法,能够有效提高分类性能,是一种简单而高效的高光谱图像分类算法。  相似文献   

5.
唐婷  潘新 《光电子.激光》2022,33(5):488-494
随着深度学习的不断发展,基于深度学习的机器 视觉方法被广泛应用,其中,卷积神 经网络(convolutional neural network,CNN)对高光谱图像(hyperspectral imagery,HSI ) 分类有着显著的效果。传统卷积网络中卷积核的采样位置是固定的,不能根据HSI中复杂的 空间结构而改变,忽略了数据在空间分布上的特征,为了提高高光谱图像分类在实际应用中 的性能,本文提出了一种基于可变形卷积的高光谱图像分类方法,考虑到HSI高维度的特性 , 将可变形卷积从2D引伸到3D,从而更好地提取3D空间上的特征。本文结合双分支双注意机制网络(double- branch dual-attention mechanism network,DBDA)的网络结构和3D可变形卷积,在Indi an Pines(IP)和Botswana(BS)2个数据集上进行了实验。实验结果表明,本文的方法在 综合精度(overall accuracy, OA) 、平均精度(average accuracy, AA)、KAPPA评价标准上均获得了更好的分类准确 率,相较于次优算法,OA提高了0.15%—0.23%,AA提高了0.21%, KAPPA提高了0.000—0.001。  相似文献   

6.
针对经典卷积神经网络(convolutional neural network,CNN) 的高光谱影像分类方法存在关键细节特征表现不足、训练需要大量样本等问题,提出一种基于多尺度特征与双注意力机制的高光谱影像分类方法。首先,利用三维卷积提取影像的空谱特征,并采用转置卷积获得特征的细节信息;然后,通过不同尺寸的卷积核运算提取多尺度特征并实现不同感受野下多尺度特征的融合;最后,设计双注意力机制抑制混淆的区域特征,同时突出区分性特征。在两幅高光谱影像上进行的实验结果表明:分别在每类地物中 随机选取10%和0.5%的样本作为训练样本,提出模型的总体分类精度分别提高到99.44%和98.86%;对比一些主流深度学习分类模型,提出模型能够关注于对分类任务贡献最大的关键特征,可以获取更高的分类精度。  相似文献   

7.
熊余  单德明  姚玉  张宇 《红外技术》2022,44(1):9-20
针对现有高光谱遥感图像卷积神经网络分类算法空谱特征利用率不足的问题,提出一种多特征融合下基于混合卷积胶囊网络的高光谱图像分类策略。首先,联合使用主成分分析和非负矩阵分解对高光谱数据集进行降维;然后,将降维所得主成分通过超像素分割和余弦聚类生成一个多维特征集;最后,将叠加后的特征集通过二维、三维多尺度混合卷积网络进行空谱特征提取,并使用胶囊网络对其进行分类。通过在不同高光谱数据集下的实验结果表明,在相同20维光谱维度下,所提策略相比于传统分类策略在总体精度、平均精度以及Kappa系数上均有明显提升。  相似文献   

8.
由于浅层卷积神经网络(convolutional neural network,CNN)模型感受野的限制,无法捕获远距离特征,在高光谱图像 (hyperspectral image,HSI) 分类问题中无法充分利用图像空间-光谱信息,很难获得较高精度的分类结果。针对上述问题,本文提出了一种基于卷积神经网络与注意力机制的模型(model based on convolutional neural network and attention mechanism,CNNAM),该模型利用CA (coordinate attention)对图像通道数据进行位置编码,并利用以自注意力机制为核心架构的Transformer模块对其进行远距离特征提取以解决CNN感受野的限制问题。CNNAM在Indian Pines和Salinas两个数据集上得到的总体分类精度分别为97.63%和99.34%,对比于其他模型,本文提出的模型表现出更好的分类性能。另外,本文以是否结合CA为参考进行了消融实验,并证明了CA在CNNAM中发挥重要作用。实验证明将传统CNN与注意力机制相结合可以在HSI分类问题中获得更高的分类精度。  相似文献   

9.
张因国  陶于祥  罗小波  刘明皓 《红外技术》2020,42(12):1185-1191
为了减少高光谱图像中的冗余以及进一步挖掘潜在的分类信息,本文提出了一种基于特征重要性的卷积神经网络(convolutional neural networks,CNN)分类模型。首先,利用贝叶斯优化训练得到的随机森林模型(random forest,RF)对高光谱遥感图像进行特征重要性评估;其次,依据评估结果选择合适数目的高光谱图像波段,以作为新的训练样本;最后,利用三维卷积神经网络对所得样本进行特征提取并分类。基于两个实测的高光谱遥感图像数据,实验结果均表明:相比原始光谱信息直接采用支持向量机(support vector machine,SVM)和卷积神经网络的分类效果,本文所提基于特征重要性的高光谱分类模型能够在降维的同时有效提高高光谱图像的分类精度。  相似文献   

10.
李鑫伟  杨甜 《红外技术》2022,44(11):1210-1219
为了减少高光谱图像的训练样本,同时得到更好的分类结果,本文提出了一种基于密集连接网络和空谱变换器的双支路深度网络模型。该模型包含两个支路并行提取图像的空谱特征。首先,两支路分别使用3D和2D卷积对子图像的空间信息和光谱信息进行初步提取,然后经过由批归一化、Mish函数和3D卷积组成的密集连接网络进行深度特征提取。接着两支路分别使用光谱变换器和空间变换器以进一步增强网络提取特征的能力。最后两支路的输出特征图进行融合并得到最终的分类结果。模型在Indian Pines、University of Pavia、Salinas Valley和Kennedy Space Center数据集上进行了测试,并与6种现有方法进行了对比。结果表明,在Indian Pines数据集的训练集比例为3%,其他数据集的训练集比例为0.5%的条件下,算法的总体分类精度分别为95.75%、96.75%、95.63%和98.01%,总体性能优于比较的方法。  相似文献   

11.
为了解决高光谱图像领域中,传统卷积神经网络因部分特征信息损失而影响最终地物分类精度的问题,采用一种基于2维和3维的混合卷积神经网络的高光谱图像分类方法,从空间增强、光谱-空间两方面分别进行了特征提取.首先从空间增强角度提出一种3维-2维卷积神经网络混合结构,得到增强后的空间信息;其次从光谱-空间角度利用3维卷积网络结构...  相似文献   

12.
潘绍明 《激光杂志》2021,42(2):110-114
针对高光谱图像(HSI)波段之间的冗余性给高光谱图像分类结果产生的不利影响,研究基于多融合多尺度特征的高光谱图像分类方法。将采用于主成分分析降维处理的HSI数据作为多尺度特征多融合残差网络输入,利用多尺度特征多融合残差块提取HSI中的光谱特征和空间特征,并组成若干组光谱-空间特征;采用支持向量机展开分类处理,获取各光谱-空间特征的概率输出结果和权重,建立多特征加权概率融合模型,利用最大后验概率获取高光谱图像分类结果。实验结果表明:光谱-空间多尺度特征融合残差块数量为2+2模式、空间输入尺寸大小为9×9,可获取最佳多尺度特征融合残差网络;所提方法抗噪能力较好,可较好体现地物细节信息;且具备较高的高光谱图像分类精度。  相似文献   

13.
陈善学  王欣欣 《信号处理》2021,37(4):545-555
针对训练样本量少导致高光谱图像分类精度低的问题,本文提出了一种基于字典优化的联合稀疏表示高光谱图像分类方法。首先,采取基于层次聚类的波段选择方法降低高光谱图像数据维度;其次,结合空间信息将高光谱数据划分为多个子集,利用已知标签信息的训练样本标记各个子集中可能成为训练样本的像元,组成训练样本备选集,根据光谱相似度准则筛选备选集得到优化字典;最后,将优化字典用于联合稀疏表示对高光谱图像进行分类。通过Indian Pines数据集和Pavia University数据集仿真实验表明,本文提出的分类算法能够有效提高高光谱图像分类精度。   相似文献   

14.
由于高光谱图像存在较高的数据维数,会给分类过程带来一些困难。为了提高分类的准确率,提出了一种使用3D卷积联合注意力机制的高光谱图像分类方法。首先,将中心像素与周围相邻的其它像素进行配对,可以通过配对构成多组新的像素对,充分利用了像素之间的邻域相关性。接着,将像素对放入3D卷积联合注意力机制网络框架中进行分类,它能够对高光谱图像中的特征进行选择性的学习。最后,通过投票策略获得像素标签。实验是在两个真实的高光谱图像数据集上进行。结果表明,所提出的方法充分挖掘了高光谱图像的光谱空间特征,能有效地提高分类精度。  相似文献   

15.
针对图像中某几类物体具有相似颜色特征而导致的分类困难问题,本文提出了一种具有隐蔽色特征物体的图像分类方法。该方法针对可见光图像中具有颜色隐蔽性物体而难以区分的问题,通过将二维图像的邻域像素空间特征与高光谱图像的谱段特征相结合并使用改进的局部线性嵌入降维算法实现了空谱联合的特征降维,最终利用主动学习胶囊网络训练高光谱数据分类器从而实现场景内目标的分类。通过改进的主动学习函数可以对更具代表性的样本进行标注,实现了利用小样本集对胶囊网络的训练,有效降低了样本的标注成本和模型的训练成本,提高了模型分类性能。实验表明,该算法运行在自建高光谱数据集上能够有效地分类隐蔽色特征物体和其他自然场景,针对隐蔽色目标的平均准确率达到了91%,针对所有类别物体的平均准确率达到了89.9%。  相似文献   

16.
高光谱图像中包含丰富的光谱特征和空间特征,这对地表物质的分类至关重要。然而高光谱图像的空间分辨率相对较低,使得图像中存在大量的混合像素,这严重制约物质分类的精度。受到观测噪声、目标区域大小及端元易变性等因素的影响,使得高光谱图像的分类仍然面临诸多挑战。随着人工智能和信息处理技术的不断进步,高光谱图像分类已成为遥感领域的一个热点问题。首先对基于特征融合的高光谱图像分类文献进行系统综述,并对几种分类策略进行分析与比较,然后介绍高光谱图像分类的发展现状及面临的相应问题,最后提出一些可以提高分类性能的策略,从而为课题的技术研究提供指导和帮助。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号