首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 156 毫秒
1.
太湖梅梁湾、贡湖湾和胥口湾水体PAHs的生态风险评价   总被引:8,自引:1,他引:7  
基于太湖梅梁湾、贡湖湾和胥口湾水体∑PAH8的等效浓度和ΣPAH8对水生生物的无观察效应浓度(NOECs),分别采用商值法、概率密度函数重叠面积法、安全阈值法和商值概率分布法评价水体∑PAH8对水生生物的生态风险,同时进行方法学比较.商值法评价结果表明∑PAH8对水生生物的生态风险表现为大型蚤(Daphina magn...  相似文献   

2.
为探讨太湖附泥藻类时空分析及与N、P等环境因子之间的关系,在不同季节采取太湖不同湖区表层沉积物,采用常规理化分析方法测定环境中的氮、磷含量及其他理化指标,利用高效液相色谱技术(HPLC)分析附泥藻类光合色素叶绿素a(Chl.a)、叶绿素b(Chl.b)、岩藻黄素(Fuco)及玉米黄素(Zea)含量。结果表明:太湖水体及表层沉积物N、P浓度空间差异明显,水体中TN、TP及总溶解性磷均表现为梅梁湾>贡湖湾>胥口湾,且空间差异显著(P<0.05),而胥口湾表层沉积物中TP及Fe-P含量显著低于梅梁湾及贡湖湾(P<0.05)。太湖附泥藻类生物量(Chl.a)及3种特征色素含量存在显著的时空差异。从空间上看,Chl.a最高值出现在贡湖湾,其值为(12.79±3.69)μg/g,最低值出现在胥口湾,其值为(2.46±1.14)μg/g。在秋季及夏季,贡湖湾附泥藻类Chl.a及3种特征色素含量高于梅梁湾,梅梁湾又高于胥口湾;在春季,梅梁湾附泥藻类Chl.a高于贡湖湾及胥口湾。从季节上看,附泥藻类Chl.a与特征色素Chl.b变化一致,梅梁湾与胥口湾在春季较高,夏季和秋季相对较...  相似文献   

3.
车丽娜  刘硕  于益  万鲁河 《环境科学学报》2019,39(10):3508-3515
根据2018年哈尔滨市春季融雪径流中16种PAHs检测数据,利用BaP毒性当量法和风险熵值法评价融雪径流中不同下垫面及各采样点中PAHs风险等级、16种PAHs单体风险等级和对水生生物的影响.结果表明:不同下垫面ΣPAHs的生态风险差异明显,城市道路、内部道路、人行道和绿地融雪径流中PAHs污染处于高生态风险等级,而屋面和冰面的生态风险处于较低水平.城市道路和内部道路均超出我国地表水环境质量标准2.8 ng·L~(-1),EBaP最高值分别为20.06和15.5 ng·L~(-1),人行道和绿地中部分EBaP值超标,屋面和冰面均未超标.从各PAHs单体RQ均值来看,Ant和BbF最高,其RQ_(MPCs)均值都为1.53,其次是BaA为1.46,Pyr为1.2,BghiP为1.04,均属高风险等级,其余单体均有中等生态风险.松花江干流水生生物对融雪径流中Pyr的毒性最强,Flu的毒性最弱, Nap的毒性居中.耐受性顺序依次为:Flu AceChr AntNap FlaBaPPhe Pyr.城市道路、内部道路和人行道融雪径流中PAHs对大型蚤和胖头鲤鱼的风险商均大于1,说明9种PAHs对这两种水生生物存在风险.比值法分析结果显示融雪径流中PAHs主要来源于燃烧过程,其中交通排放源显著,尤其是汽油车辆尾气排放.  相似文献   

4.
太湖典型湖区中胶体有机碳浓度的时空变化   总被引:3,自引:0,他引:3  
利用切向流超滤技术研究了太湖梅梁湾与贡湖湾2个不同生态类型的典型湖区在不同季节胶体有机碳(COC)的浓度变化,并同步观测了浮游植物、叶绿素(Chla)、悬浮物(SS)等背景指标.结果表明,作为藻型湖区的梅梁湾,其COC浓度夏季最高,秋季最低;作为草型湖区的贡湖湾.其COC浓度在秋季最高,冬季最低;太湖梅梁湾和贡湖湾COC浓度的差异和季节变化有关,夏季梅梁湾COC浓度高于贡湖湾,差异为一年中最大;太湖水体COC浓度和Chla浓度显著正相关(r=0.81,P=0.015),表明浮游植物的生命活动址太湖水体COC的一个重要来源.  相似文献   

5.
X142200700741太湖多环芳烃的历史沉积记录/刘国卿(中科院广州地球化学研究所有机地球化学国家重点实验室)…∥环境科学学报/中科院生态环境研究中心.-2006,26(6).-981~986环图X-9通过分析测定太湖上、下2个典型湖湾(梅梁湾和东山胥口湾)沉积钻孔中多环芳烃的垂直分布和含量特征,结合210Pb定年,重建了该地区多环芳烃的历史沉积记录.研究发现,梅梁湾沉积物PAHs污染年代早并重于胥口湾,但两地PAHs污染类型基本相似.在剖面深度0~28cm范围内,梅梁湾和胥口湾多环芳烃的沉积通量范围分别为40~320ng·cm-2·a-1和13~150ng·cm-2·a-1.自上世纪4…  相似文献   

6.
周莉  冯胜  李忠玉  张运林  白杨 《中国环境科学》2015,35(10):3108-3116
基于2014年8月对太湖61个采样点的浊度和各物理化学指标的测定,分析夏季太湖浊度空间、垂直分布特征及其影响因素,利用实测的湖泊底层浊度垂直分层对水-沉积物界面进行定量识别.结果表明,夏季太湖浊度表、中、底层浊度平均值分别为(28.3±21.4), (23.0±13.3), (31.7±15.0) NTU,总体分布趋势为太湖北部贡湖湾、梅梁湾最大,其次为西部及湖心区,较低值出现在胥口湾及东太湖;线性回归分析表明,表、中、底层浊度分别与叶绿素a、无机悬浮物、总悬浮物浓度的拟合关系最好;基于浊度垂直分层定量识别的太湖水-沉积物界面厚度均值为(156.4±53.5) mm,其中贡湖湾及太湖西部厚度最大,其次为湖心区及梅梁湾,东太湖、胥口湾、竺山湾界面厚度最小,界面厚度与中层浊度存在显著的正相关(R2=0.552),风浪引起的频繁的沉积物再悬浮将增加水-沉积物界面厚度.太湖浊度的垂直分层可用于水-沉积物界面的定量识别,为水-沉积物界面营养盐交换和物质循环研究提供科学依据.  相似文献   

7.
太湖多环芳烃的历史沉积记录   总被引:7,自引:1,他引:6  
通过分析测定太湖上、下2个典型湖湾(梅梁湾和东山胥口湾)沉积钻孔中多环芳烃的垂直分布和含量特征,结合210Pb定年,重建了该地区多环芳烃的历史沉积记录.研究发现,梅梁湾沉积物PAHs污染年代早并重于胥口湾,但两地PAHs污染类型基本相似.在剖面深度0~28cm范围内,梅梁湾和胥口湾多环芳烃的沉积通量范围分别为40~320ng·cm-2·a-1和13~150 ng·cm-2 a-1.自上世纪40年代起,梅梁湾沉积物中的PAHs通量呈不断上升之势,近25年来增加更为迅速,可能源于太湖北部湖区乡镇工业的快速发展;而胥口湾的PAHs污染只在1990年之后才开始加重,并呈急剧增加之势态.太湖沉积物中的多环芳烃主要为热(燃烧)成因来源,沉积物中高环PAHs的比例呈递增趋势,流域内能源消耗和机动车尾气排放的增加是其主导因素.多环芳烃的沉积记录很好的反映了周边地区社会经济的发展变化,反映了人类活动与水环境污染状况之间的关系,提示经济发展过程中环境保护的相对滞后.  相似文献   

8.
太湖北部不同湖区春、夏季溶解性酸性多糖分布   总被引:1,自引:0,他引:1       下载免费PDF全文
为研究太湖dAPS(dissolved acidic polysaccharides,溶解性酸性多糖)的时空变化,探讨湖泊水体中dAPS对有机碳的贡献和重要性,于2012年春、夏季调查了太湖北部不同湖区(竺山湾、梅梁湾、贡湖湾、湖心区)水体中ρ(dAPS),分析了其时空变化特征及其与ρ(Chla)之间的关系,并探讨了不同湖湾中dAPS对DOC(溶解性有机碳)的贡献率. 结果表明,太湖北部水体中ρ(dAPS)春、夏季变化范围为3.02~9.93mg/L,平均值为(6.10±1.59) mg/L. 夏季太湖北部各湖区之间ρ(dAPS)没有显著性差异,春季梅梁湾中ρ(dAPS)显著高于湖心区(P<0.05),其他湖区并没有显著性差异. 春、夏两季ρ(dAPS)的最低值均出现在湖心区. 除贡湖湾外,夏季太湖北部各湖区ρ(dAPS)与ρ(Chla)都存在显著线性正相关,而春季各湖区则无显著线性关系. 这说明春、夏季dAPS的受控因素不一样,夏季ρ(dAPS)受藻类影响较大. 夏季各湖区dAPS对DOC的贡献率以贡湖湾最高,平均值高达46.7%±7.7%,春季则以梅梁湾的贡献率较高,平均值为68.6%±5.9%,这意味着dAPS在太湖水体有机碳循环中起着重要的作用.   相似文献   

9.
太湖梅梁湾2008年有机污染物检测及环境影响度   总被引:3,自引:1,他引:2       下载免费PDF全文
利用GC-MS技术定性和定量分析2008年不同季度太湖梅梁湾水体中的半挥发性有机污染物(SVOCs),并采用多介质环境目标值(MEG)分别就人体健康影响度(ASI)和生态环境影响度(ASII)对太湖梅梁湾水质进行了评价.结果表明,2008年春、夏、秋、冬太湖梅梁湾水体中25种EPA优先控制SVOCs的总浓度分别为17.459,11.140,11.147,5.675mg/L,其中检出率较高的是邻苯二甲酸酯类物质、苯系物和PAHs;健康和生态影响度均小于1,表明对健康和生态尚属安全.  相似文献   

10.
太湖不同湖区轮虫群落结构季节变化的比较研究   总被引:10,自引:3,他引:7  
2006年7月~2007年6月对太湖不同湖区(河口区、梅梁湾、太湖湖心区和贡湖湾)轮虫的季节变化进行了比较研究.整个研究期间,河口区、梅梁湾、太湖湖心区和贡湖湾轮虫种类数分别为23、15、14和21;河口区轮虫的年平均密度最高,为475个·L-1,梅梁湾最低,为164个·L-1,太湖湖心区为189个·L1-,贡湖湾为338个·L-1.4个湖区优势种不同,河口区轮虫优势种为萼花臂尾轮虫(B.cdyciflorus),梅梁湾为角突臂尾轮虫(B.angularis),太湖湖心区和贡湖湾优势种都是针簇多肢轮虫(P.trigla).食物的不同以及大型浮游甲壳动物的抑制作用,可能是太湖4个湖区轮虫群落结构不同的重要原因.相关分析表明,轮虫数量与枝角类数量、枝角类生物量和桡足类生物量极显著负相关;轮虫数量与透明度显著正相关.结果表明,太湖4个不同湖区轮虫群落结构不同.  相似文献   

11.
由于再生水中含有微量或者痕量的有机污染物,因此再生水利用过程中潜在的生态和健康风险一直受到社会的广泛关注.为探明再生水中多环芳烃(PAHs)、邻苯二甲酸酯(PAEs)和农药等典型有机污染物的赋存情况以及其在再生水厂提标改造前后的去除情况,本文于2019年对北京市5座再生水厂出水进行了连续6个月的监测,并对检出的PAHs、PAEs和农药进行了生态风险评价.结果显示:5座再生水厂出水中检出率为100%的污染物为PAHs中萘(NaP)、芴(Flu)、菲(Phe)、蒽(Ant)、荧蒽(Flua)、芘(Pyr)、苯并[a]蒽(BaA)、(Chr)、苯并[a]芘(BaP),PAEs中邻苯二甲酸二甲酯(DMP)、邻苯二甲酸二乙酯(DEP)、邻苯二甲酸二异丁酯(DIBP)、邻苯二甲酸二正丁酯(DNBP)、邻苯二甲酸二乙基己酯(DEHP)和农药中敌敌畏、阿特拉津.在各类污染物的组分分布上,总PAHs含量中以2、3环的PAHs为主,主要包括Phe、NaP、Flu、Ant和Ace,共占PAHs总量的55%以上;PAEs中以DEHP、DMP、DIBP和DNBP为主,共占总PAEs含量的80%以上;农药中以敌敌畏和阿特拉津为主.5座再生水厂出水中总PAHs的月平均浓度为53.6~65.9 ng·L-1;总PAEs的月平均浓度为4881.3~7050.2 ng·L-1;总农药的月平均浓度为77.7~97.2 ng·L-1.与污水处理厂改造前相比,出水中PAHs和PAEs的总浓度明显下降,其中PAHs总浓度下降约一个数量级;农药中有机氯农药在改造前文献报道有检出,而改造后我们的样品中均为未检出;通过对检出目标化合物的生态风险评价,所有PAHs,PAEs中DMP、DEHP、DEP,农药中阿特拉津和百菌清在各水厂出水中均为低风险污染物,但是PAEs中DIBP和DNBP在各水厂出水中均为中、高风险污染物;农药敌敌畏和毒死蜱在个别月份样品中表现出了中风险.  相似文献   

12.
以太湖不同营养水平湖区为研究对象,采用改进的砷(As)形态连续提取法对表层沉积物中As的化学形态进行分析研究,探讨了沉积物中总砷(TAs)和As形态的分布特征及其与沉积物中营养盐和总有机碳(TOC)的相关性,并利用潜在生态风险评价(Eir)和风险指数编码法(RAC)评估了各湖区沉积物中As的生态风险水平.结果表明,各湖区表层沉积物中TAs的平均含量约为14.23~16.59 mg·kg~(-1),其中,竺山湾的TAs平均含量相对最高.As形态表现出明显的空间分布特征,其中,北部富营养湖区(竺山湾、梅梁湾、贡湖湾)中的有效态As(非专性吸附态和专性吸附态)与潜在有效态As(无定形氧化铁结合态、晶体形氧化铁结合态、有机结合态)的含量与百分比均高于中营养水平的南太湖,而北部湖区的残渣态As含量则低于南太湖.Pearson相关分析结果显示,除晶体形氧化铁结合态As和残渣态As外,沉积物总氮(TN)、总磷(TP)和TOC与其他As形态均存在显著的正相关关系.潜在生态风险评价结果表明,各湖区沉积物TAs均处于低风险;而RAC评价结果表明,各湖区沉积物的有效态As基本处于中等风险水平,且北部湖区的RAC指数均明显高于南太湖.  相似文献   

13.
太湖表层沉积物中PAHs的空间分布及风险评价   总被引:3,自引:0,他引:3  
采用GC-MS方法测定了太湖湖区20个典型采样点表层沉积物中的多环芳烃(PAHs)含量,共检出13种PAHs,其浓度〔w(PAHs)〕范围为4223~2 0011 μgkg. 其中,属于我国优先控制的污染物有5种,属于US EPA(美国国家环境保护局)优先控制的污染物有11种,w(PAHs)为2775~1 7568 μgkg,最高浓度出现在太湖梅梁湾区域,PAHs在湖区总体的空间分布趋势呈梅梁湾>南部区>东部区>湖心区. 风险评价结果表明,针对检测出的11种US EPA优先控制的PAHs,除了某些采样点的芴(Flu)浓度处于中度潜在风险水平外,其余10种PAHs尚未对水环境造成明显危害风险影响. 利用特征化合物指数法对PAHs进行源分析发现,其主要来源是燃料燃烧.   相似文献   

14.
太湖湖滨带大型底栖动物的群落结构研究   总被引:1,自引:0,他引:1  
为调查太湖湖滨带大型底栖动物群落现状和探索不同湖区之间差异,于2009年12月和2010年4月对太湖湖滨带49个采样点完成两次调查采样。共采集大型底栖动物3门7纲69种。太湖不同湖区的湖滨带之间分类数、平均密度和生物量都存在显著的空间差异(P0.05)。经过计算可以得出,各湖区大型底栖动物多样性和均匀度从高到低依次为东部沿岸、贡湖湾、东太湖、南部沿岸、梅梁湾、竺山湾、西部沿岸。不同湖滨带生态环境的差异,影响了大型底栖动物群落结构的组成。  相似文献   

15.
三种农作物秸秆燃烧颗粒态多环芳烃排放特征   总被引:3,自引:0,他引:3  
收集3种农作物秸秆玉米,水稻和小麦露天燃烧排放的颗粒物样品,并利用气相色谱-质谱(GC-MS)对样品中的34种多环芳烃(PAHs)进行分析,研究颗粒态PAHs的排放因子及可用于源解析的诊断参数.结果表明,3种秸秆燃烧总PAHs的排放因子为644.18~1798.13μg/kg;其中4环PAHs在秸秆燃烧样品中含量最高,约占38.8%~58.8%,6环PAHs所占比例相对较小,约占5.72%~15.17%.PAHs中部分单体具有相对较强致癌性,对环境和人体健康的影响不可忽视.首次检测分子量为300的高分子多环芳烃二苯并[a,e]荧蒽.在玉米、水稻和小麦秸秆燃烧排放颗粒物中的排放因子分别为6.70,2.77和2.92μg/kg.此外,研究发现BaP/BghiP, Phe/Phe+Ant和Flu/(Flu + Pyr)比值可以作为较好的区分秸秆燃烧与其他来源的诊断参数.  相似文献   

16.
太湖湖滨带底泥氮、磷、有机质分布与污染评价   总被引:22,自引:0,他引:22       下载免费PDF全文
采集了环太湖湖滨带表层(0~10cm)底泥,研究分析了湖滨带底泥中有机质(OM)、总氮(TN)、总磷(TP)的空间分布特征,并对太湖湖滨带底泥进行营养评价.结果表明,湖滨带底泥中OM含量在1.42%~9.96%之间,空间分布趋势为:东太湖>竺山湾>贡湖>梅梁湾>南部沿岸>东部沿岸>西部沿岸; TN含量在458~5211mg/kg之间,空间变化趋势为东太湖>竺山湾>东部沿岸>贡湖>南部沿岸>梅梁湾>西部沿岸; TP含量在128.56~1392.16mg/kg之间,空间变化趋势为竺山湾>梅梁湾>东太湖>南部沿岸>贡湖>东部沿岸>西部沿岸,OM与TN分布趋势相似,TN与OM之间极显著正相关(r = 0.903, P<0.01),TP与OM之间弱相关(r = 0.073, P<0.332).结合综合污染指数和有机指数评价法可知,太湖湖滨带底泥环境质量整体较好,氮、磷污染除东太湖和竺山湾属重度污染外其他各区属轻中度污染;有机污染除东太湖外大部分区域属较清洁区.  相似文献   

17.
太湖不同湖区夏季蓝藻生长的营养盐限制研究   总被引:12,自引:0,他引:12       下载免费PDF全文
许海  秦伯强  朱广伟 《中国环境科学》2012,32(12):2230-2236
采集太湖6个湖区水样,利用营养盐添加,现场培养实验研究了水华蓝藻在不同湖区水体中生长的氮、磷限制情况和蓝藻的生长潜力.结果表明,梅梁湾水体只有氮、磷同时添加才对蓝藻生物量具有显著的促进作用,表明该湖区水华蓝藻的生长不仅存在磷限制,而且存在明显的氮限制.在太湖西部河口区、竺山湾和贡湖湾,蓝藻对单独的氮添加没有反应,而单独磷添加和氮磷同时添加对蓝藻生长具有同样的促进作用,表明磷是这些区域藻类生长的主要限制因子.东太湖水体不论氮磷单独还是同时添加对蓝藻生长均没有促进作用,表明存在氮磷以外的限制因子.氮磷供应充足的情况下,梅梁湾和西部河口区水体培养的蓝藻生长速率最高,表明这两个水域蓝藻的生长潜力最大,氮磷输入极易刺激蓝藻大量增殖,这在一定程度上解释了为什么蓝藻水华在这两个区域更为严重.蓝藻在贡湖湾和胥口湾水体中生长速率较低,在东太湖水体中的生长速率最低,因此这些水域的蓝藻增殖潜力较低.  相似文献   

18.
太湖北部三个湖区各形态氮的空间分布特征   总被引:5,自引:0,他引:5       下载免费PDF全文
通过对太湖北部竺山湾、梅梁湾和贡湖上覆水、间隙水和表层沉积物中各形态氮含量的分析,探讨了其中各形态氮的空间分布特征,计算了沉积物-水界面氨氮(NH4+-N)的扩散通量,并对上覆水、间隙水和沉积物中各形态氮进行了相关性分析.结果表明,空间上,上覆水、间隙水和沉积物中,NH4+-N的平均浓度为竺山湾>梅梁湾>贡湖的分布趋势;NO3--N在上覆水和沉积物中为贡湖>梅梁湾>竺山湾的分布趋势,但间隙水中梅梁湾>贡湖>竺山湾;TN在上覆水、间隙水和沉积物中的分布与NH4+-N相似.NH4+-N在竺山湾、梅梁湾和贡湖的平均扩散通量分别为1009.27μmol/(m2×d)、49.35μmol/(m2×d)和3.14μmol/(m2×d).相关性分析表明:上覆水、间隙水、表层沉积物之间NH4+-N存在相关性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号