首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
将自制的壳聚糖接枝聚己内酯(CS-g-PCL)与聚左旋乳酸(PLLA)分别溶解在二氯甲烷/N,N-二甲基甲酰胺(体积比为7∶3)共混溶剂中制备出相同质量浓度的均匀溶液,然后将两种溶液以不同的质量比共混制备PLLA/CS-g-PCL混合纺丝液,通过静电纺丝制备PLLA/CS-g-PCL电纺纤维膜,借助扫描电镜、傅里叶变换红外光谱、接触角测量仪及强度拉伸仪等测试手段对其结构和性能进行研究。结果表明:当PLLA/CS-g-PCL混合溶液的质量浓度为0.15 g/m L,PLLA与CS-g-PCL质量比8∶2时,PLLA/CS-g-PCL电纺纤维膜的纤维表面光滑,平均直径为760.1 nm,纤维膜的孔隙率为84.6%,接触角为73°,吸水率为482.2%,拉伸强度为3.54 MPa,拉伸模量为125.4 MPa,断裂伸长率为93.8%;相比于纯PLLA电纺纤维膜,PLLA/CS-gPCL电纺纤维膜的亲水性和吸水性得到了改善,模量和断裂伸长率也得到了提高。  相似文献   

2.
采用四氢呋喃和无水乙醇为溶剂,利用静电纺丝法制备了聚己内酯(PCL)/聚乙二醇(PEG)共混纳米纤维。研究了共混配比、溶液浓度、无水乙醇的加入以及电纺电压、接收距离等工艺参数对纤维形态和性能的影响。测试结果表明:聚乙二醇和聚己内酯以一定比例共混后改善了聚己内酯纤维毡的亲水性和细胞相容性;随着纺丝原液浓度增加,电纺产品由高分子微/纳米液滴结构渐变为珠状结构较少的平滑纤维,平均纤维直径逐渐增大;一定范围内,纤维平均直径随电压的上升而增大,但与接收距离关系不大;此外,加入无水乙醇后,共混溶液电导率增加,有利于喷射流的劈裂,减少了珠状结构的数量。  相似文献   

3.
采用四氢呋喃和无水乙醇为溶剂,利用静电纺丝法制备了聚己内酯(PCL)/聚乙二醇(PEG)共混纳米纤维。研究了共混配比,溶液浓度,无水乙醇的加入以及电纺电压,接收距离等工艺参数对纤维形态和性能的影响。测试结果表明:聚乙二醇和聚己内酯以一定比例共混后改善了聚己内酯纤维毡的亲水性和细胞相容性;随着纺丝原液浓度增加,电纺产品由高分子微/纳米液滴结构渐变为珠状结构较少的平滑纤维,平衡纤维直径逐渐增大;一定范围内,纤维平均直径随电压的上升而增大,但与接收距离关系不大;此外,加入无水乙醇后,共混溶液电导率增加,有利于喷射流的劈裂,减少了珠状结构的数量。  相似文献   

4.
利用静电纺丝法制备了聚羟基丁酸酯( PHB)纤维膜,探讨了不同溶剂体系的PHB纺丝溶液性质及其纤维直径分布和纤维形貌;研究了加热和蒸气灭菌对PHB纤维膜的力学性能和亲水性的影响.结果表明:采用氯仿/N-N二甲基甲酰胺(DMF)复合溶剂体系,提高了PHB纤维膜的可纺性,纤维平均直径由2.3μm下降到1.0μm,但纤维粗细...  相似文献   

5.
通过静电纺丝的方法制备了具有发光特性的ZnS:Mn/聚乙烯吡咯烷酮纳米纤维,电纺溶液中的溶剂是DMF、水、乙醇,使用了扫描电子显微镜,荧光光谱仪,透射电子显微镜,X-射线衍射仪,研究了加热对电纺溶液中含有DMF溶剂的电纺纤维的影响,结果是纤维之间的分离程度提高,纤维内部的纳米粒子变得清晰,纤维内部粒子的结晶度提高,该纤...  相似文献   

6.
采用溶液干纺法制备了聚β-羟基丁酸酯/聚乳酸/聚氧乙烯(PHB/PLLA/PEO)共混纤维,研究了PHB/PLLA/PEO初生纤维的晶态结构、在50℃和110℃下拉伸后共混纤维的力学性能及表面形态。结果表明:PHB与PLLA在PHB/PLLA/PEO共混纤维中的晶型均为α晶型;初生纤维经50℃和110℃拉伸2倍后,纤维的断裂强度均有所增加,断裂伸长率减小,50℃拉伸的纤维断裂强度高于110℃拉伸,其断裂方式均为韧性断裂;w(PEO)为5%,PHB/PLLA质量比为1:1,50℃拉伸2倍的PHB/PLLA/PEO共混纤维断裂强度为0.471 cN/dtex,断裂伸长率为34.05%  相似文献   

7.
气流-静电纺丝法制备聚对苯二甲酸乙二酯纳米纤维   总被引:1,自引:1,他引:0  
采用50%苯酚和50%1,1,2,2-四氯乙烷的混合溶液为溶剂,通过气流-静电纺丝法制备了聚对苯二甲酸乙二酯(PET)纳米纤维。利用扫描电镜(SEM),研究了聚合物分子质量、溶液浓度、电压、接收距离(喷丝孔到接收板的距离)对电纺纤维形态结构的影响。结果表明:随着聚合物分子质量和溶液浓度增加,纤维平均直径也随之增加;纤维平均直径随电压的增加而减小;随接收距离的增加,纤维平均直径先减小后增加。最佳工艺条件为:聚合物特性黏度为0.818 dL/g,溶液质量分数为15%,电压为32 kV,接收距离为23 cm,所得PET电纺纳米纤维平均直径为85 nm。  相似文献   

8.
《合成纤维工业》2016,(3):26-29
以聚β-羟基丁酸酯(PHB)为基体,左旋聚乳酸(PLLA)和聚氧乙烯(PEO)为第二组分,采用多层静电纺丝法制备了三层复合的PHB/PLLA/PHB,PHB/PEO/PHB,PHB/PLLA/PEO多级结构PHB基纤维膜,研究了多级结构PHB基纤维膜的形貌、结晶行为、热性能和亲水性能。结果表明:多级结构纤维膜中PHB组分的平均直径为770~790 nm,PEO的平均直径为280~290 nm,PLLA的平均直径为400~410 nm;PHB,PLLA组分在多级结构纤维膜中的晶型均为α晶型,PEO组分为单斜晶型,多级结构PHB基纤维膜中各组分的热性能没有受到影响;多级结构纤维膜的亲水性由强到弱的顺序依次为PHB/PEO/PHB纤维膜、PHB/PEO/PLLA纤维膜、PHB/PLLA/PHB纤维膜、PHB纤维膜,多级结构可改善PHB电纺纤维膜的亲水性。  相似文献   

9.
采用75%四氢呋喃(THF)和25%N,N-二甲基甲酰胺(DMF)的混合溶液作溶剂,通过气流-静电纺丝法制备了苯乙烯-丁二烯-苯乙烯嵌段共聚物(SBS)超细纤维。利用扫描电镜(SEM),研究了溶液浓度、电压、接收距离(喷丝孔到接收板的距离)、喷丝孔内径对静电纺纤维的直径和形貌的影响。研究发现:溶液浓度对电纺纤维的直径和形貌有非常重要的影响,当溶液浓度由10%增加到18%时,电纺纤维平均直径随之成线性增加;当电压由23.8kV增加到33.8kV时,纤维平均直径先减小后增加。最佳工艺条件为:溶液质量分数为14%,电压为28.8kV,接收距离为20cm,喷丝孔内径为0.27mm,所得SBS电纺超细纤维平均直径为429nm。  相似文献   

10.
采用聚醚砜(PES)的良溶剂二甲基甲酰胺(DMF)和非良溶剂丙酮(AC)为共溶剂体系,研究了溶剂组成、纺丝成形条件对静电纺丝PES纤维的形貌及纤维直径的影响。结果表明:DMF/AC的配比对于静电纺丝PES纤维形貌具有直接的调控作用,随着DMF/AC混合溶剂中AC用量的增加,纤维平均直径变大,纤维毡中串珠数目明显减少,纤维均一性变好;随着纺丝液浓度的升高,纺丝电压的增大,纤维的平均直径变大;接收距离的变化对纤维平均直径影响不大;PES最佳纺丝工艺条件为纺丝溶液质量分数13%,纺丝电压15 kV,接收距离10 cm,mDMF/mAC为8.5/1.5,在此条件下,可以获得纤维平均直径为96 nm的PES纤维毡。  相似文献   

11.
采用磁场辅助静电纺丝法制备了有序聚丙烯腈(PAN)纳米纤维,分析了PAN/二甲基甲酰胺(DMF)溶液浓度、纺丝电压、注射速度、磁铁间距和溶剂DMF及DMF与二甲基亚砜(DMSO)混合溶剂等因素对PAN纤维有序度的影响。结果表明:随着PAN/DMF溶液中PAN浓度增大,PAN纤维有序度逐渐增大;注射速度对纤维有序度影响不明显;随着纺丝电压和磁铁间距增大,PAN纤维有序度先增大后减小;DMSO的加入,使溶液可纺性降低,不利于纤维有序排列;对于PAN/DMF溶液体系,适宜的磁场辅助静电纺丝的工艺参数为PAN质量分数12%,纺丝距离12 cm,电压14 k V,注射速度0.5 m L/h,磁铁间距2.5 cm,纺丝得到的PAN纳米纤维的有序度为92%。  相似文献   

12.
分别用甲酸、六氟异丙醇(HFIP)或甲酸与醋酸(HAc)、N,N-二甲基甲酰胺(DMF)、HFIP的混合溶剂溶解聚己内酰胺(PA6),通过静电纺丝法制备了纳米级的PA6纤维。结果表明:甲酸作为溶剂时,PA6可纺丝溶液质量分数为8%~22%,所纺出的PA6纤维直径为50~300 nm;HFIP作为溶剂时PA6可纺丝溶液质量分数为8%~18%,纤维直径为50~500 nm;甲酸与HFIP,HAc,DMF的混合溶剂对纺丝状态及纤维直径分布的影响均表现为随第2种溶剂的加入,纤维直径的分布变广,平均直径增加;HAc的加入能提高PA6溶液的可纺性。  相似文献   

13.
将聚羟基丁酸戊酸酯(PHBV)与聚乙二醇(PEG)进行共混,以三氯甲烷/乙醇为溶剂,采用静电纺丝方法,制备PHBV/PEG电纺纤维膜,并对其结构与性能进行表征。结果表明:PHBV/PEG共混物溶液的浓度为0.1 mg/L,静电纺丝得到的PHBV/PEG电纺纤维膜纤维表面光滑,具有较好的吸水性、透气性及力学性能;当PHBV/PEG共混物中PEG质量分数为20%时,纤维直径为776 nm,表面接触角为81°,吸水率达到369.5%,水蒸气透过率为2 119.5 g/(m~2·d),拉伸强度为4.34 MPa,拉伸模量为167.4 MPa,断裂伸长率为48.8%。  相似文献   

14.
分别将聚醚砜酮(PPESK)/聚苯乙烯(PS)不相容体系溶于N,N-二甲基乙酰胺或N-甲基吡咯烷酮与四氢呋喃的混合溶剂,聚甲基丙烯酸甲酯(PMMA)/聚丙烯酸甲酯(PMA)相容体系溶于丁酮,搅拌得到聚合物共混溶液进行静电纺丝和浇铸成膜。研究了浇铸膜与电纺纤维膜的微观结构与力学性能。结果表明:静电纺丝改善了不相容体系的混容性,而未改变相容体系的混容性;溶剂对电纺纤维的微观结构以及力学性能有所影响。  相似文献   

15.
合成了含四重氢键UPy单元的聚氨酯,该四重氢键体系在非极性溶剂CHCl3中能通过四重氢键识别发生自聚作用,溶液黏度可大大提高,有利于静电纺丝的顺利进行,可降低最低可纺浓度。从溶剂配比和纺丝液的浓度两方面初步探讨了该聚氨酯的静电可纺性:φ(DMF)/φ(CHCl)3=1/1为该体系的最佳溶剂配比;当聚氨酯的质量分数为8%~12%时,可以顺利得到聚氨酯纳米纤维。  相似文献   

16.
以N,N-二甲基甲酰胺(DMF)和四氢呋喃(THF)为混合溶剂配制聚碳酸酯基热塑性聚氨酯(PU)纺丝溶液,通过静电纺丝法制备PU纳米纤维。重点研究了纺丝溶液浓度、混合溶剂中DMF和THF的体积比、纺丝电压和纺丝溶液流速对PU纳米纤维形态、直径及其分散性的影响。结果发现,纺丝液浓度为12%,混合溶剂中DMF与THF体积比为1∶1,纺丝电压为10 kV,纺丝溶液流速为0. 8 m L/h时,通过静电纺丝法制得的PU纳米纤维粗细均匀,表面光滑,纤维之间无粘连现象,形成的纳米纤维膜空隙率高。  相似文献   

17.
采用同轴静电纺丝技术,以聚丙烯腈(PAN)溶液为核层、聚苯乙烯(PS)溶液为壳层,制备了PAN@PS复合纳米纤维。研究了纺丝液浓度、溶剂种类对PAN@PS复合纳米纤维形貌和结构的影响。结果表明:PS/四氢呋喃(THF)作为壳层溶液的复合纳米纤维(PAN@PS/THF)可获得相界面清晰的同轴纤维。随PS纺丝液浓度的增加,纤维的直径先增大后有所减小,整体呈现递增的趋势,当PS/THF质量分数为20%时,纤维直径约为693 nm且表面光滑。而以质量分数为20%的PS/二甲基甲酰胺(DMF)为壳层溶液的复合纳米纤维(PAN@PS/DMF)直径有所增加且纤维表面凹凸不平,呈现双相连续的结构。因此,在静电纺丝过程中,可以通过改变纺丝液的参数来调节纤维的形貌和结构。  相似文献   

18.
聚乳酸纤维的静电纺丝及其形态结构研究   总被引:3,自引:0,他引:3  
采用二氯甲烷为溶剂,以滚筒为收集装置,利用静电纺丝法制备了聚乳酸纳米纤维。分析了溶液体系和滚筒转速对纤维形态结构的影响。结果表明:在质量分数相同的条件下,采用相对分子质量较大的聚乳酸切片所纺纤维直径细而均匀;质量分数增加时,电纺丝产品由一些高分子微/纳米液滴渐变为成形较好、珠状较少的平滑纤维,其平均纤维直径先增加后减小;控制收集滚筒的转速在一定范围内,可以获得排列取向较好的纤维。  相似文献   

19.
基础理论     
<正>TQ 340.120143009聚乳酸-聚己内酯共混物的电纺纤维:形态和取向Lu Liangliang…;IndustrialEngineering Chemistry Re-search,2012,51(9),p.3682(英)文章中运用静电纺丝成功制备聚乳酸(PLA)-聚己内酯(PCL)生物可降解共混物有序纤维束和无规取向的纤维网。对于网状纤维来说,两种聚合物的共混比和复配溶剂的配比是影响纤维形态的重要因素。研究结果表明,含PCL质量分数较低的纤维比含PCL质量分数较高的纤维形态更均一、纤维的平均直径更高。此外,加入少量二甲基甲酰胺(DMF)作  相似文献   

20.
利用静电纺丝法制备了超细聚ε-己内酯(PCL)纤维;借助扫描电镜仪和差示扫描量热仪表征了PCL纤维的形态与热性能;研究了电纺过程中溶液浓度、电压、接收距离和纺丝速度对纤维形态的影响。结果表明:当纺丝电压为10 kV,接收距离为15 cm,纺丝速度为2 mL/min时,纺丝液中PCL质量分数为6%~12%能获得连续无串珠的纤维;纺丝电压为8~12 kV,电纺过程稳定;接收距离对纤维的直径和形貌无明显影响;与流延成型的PCL膜相比,电纺PCL纤维具有较低的结晶度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号