首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Ho2O3 and Tm2O3 doped Bi2O3 composite electrolyte type materials for solid oxide fuel cells (SOFCs) operating at intermediate-temperature were investigated. The bismuth-based ceramic powders were produced by using conventional solid-state synthesis techniques. The products were characterized by means of scanning electron microscopy (SEM), X-ray powder diffraction (XRD), differential thermal analysis/thermal gravimetry (DTA/TG), and the four-point probe technique (4PPT). XRD and DTA/TG measurements indicate that all of the samples have the stable fluorite type face centered cubic (fcc) δ-phase. 4PPT measurements were performed in the temperature range 150–1000 °C in air and these measurements showed that the electrical conductivity of the samples decrease with increasing amount of Tm2O3. This increase in the electrical conductivity of the samples could be attributed to the increase in the numbers of highly polarizable cations and oxide ion vacancies. The highest conductivity value was found as 5.31×10?1 Ω cm?1 for the (Bi2O3)1?x?y(Ho2O3)x(Tm2O3)y ternary system (for x=20 and y=5 mol%) at 1000 °C. The activation energies of the samples were calculated from log σ graphics versus 1000/T. These calculated results showed that the translation motion of the charge carriers, oxygen vacancies, and space charge polarizations are responsible for the change in activation energy as a function of temperature.  相似文献   

3.
Powders of (1−x)La(Mg1/2Ti1/2)O3xSrTiO3 series have been prepared by a non-conventional chemical route based on the Pechini method. Homogeneous solid solutions allowed the sintering of dense and single-phase ceramics for the full composition range (0⩽x<1). Crystal structure of the ceramics was investigated by XRD and several compositional driven structural transformations were observed. The dielectric function of the ceramics was measured at radio, microwave and far infrared (FIR) frequency ranges to help clarifying the relationship between dielectric properties and structure. The FIR data were found to reflect clearly the sequence of structural modifications observed. In order to evaluate the importance of intrinsic mechanisms in the dielectric response at the GHz and MHz ranges, the reflectivity spectra were fit to the Berreman–Unterwald form of dielectric function. The fits showed that the lower frequency dielectric response seems to be dominated by lattice phonons. Microwave permittivity and temperature coefficient of the resonant frequency were found to obey a hyperbolic-type law.  相似文献   

4.
5.
The molar magnetic susceptibility (χmol) of Bi1 ? x La x Fe1 ? x Co x O3 solid solutions (x = 1.0, 0.9, 0.8, or 0.7) with a crystal structure of rhombohedrally distorted perovskite (R $\bar 3$ c) has been investigated in the temperature range of 5–300 K in a 0.86 T magnetic field. In the temperature range where χmol depends on temperature T according to the Curie-Weiss law, the resulting effective magnetic moments of Fe3+ and Co3+ ions ( $\mu _{eff,Fe^{3 + } ,Co^{3 + } ,} \mu _{eff,Fe^{3 + } } $ and $\mu _{eff,Co^{3 + } } $ ) have been determined for the solid solutions under study. Fe3+ ions in the solid solutions have been found to be in the mixed intermediate spin (IS) and high spin (HS) states ( $\mu _{eff,Fe^{3 + } } $ is 4.26μB and 4.68μB for the temperature range of 5–100 and 150–300 K, respectively). It is shown that 8% Co3+ ions in LaCoO3 at 5–19 K are in the paramagnetic IS state and they determine to a great extent the magnetic susceptibility. It is established that only 9% and 18% Co3+ ions in Bi1 ? x La x Fe1 ? x Co x O3 solid solutions (x = 0.9 or 0.8) are in the paramagnetic IS state in the temperature ranges of 5–30 and 5–110 K, respectively, while the other ions are diamagnetic.  相似文献   

6.
Perovskite-type oxides such as La1?x Ca x NiO3 (x = 0.0, 0.05, 0.1, 0.3, 0.5 and 0.8) have been prepared from citrate precursors and characterized by XRD, TPR, TG-H2 and XPS. Catalytic experiments in the reforming of CH4 with CO2 have been carried out in a tubular reactor at 750 °C and atmospheric pressure. After the catalytic tests the catalysts were studied by TPO and SEM. Partial substitution of La by Ca was performed to stabilize Ni particles and to prevent carbon deposition. The XRD profiles showed that the perovskite structure is the only compound identified within the 0 ≤ x ≤ 0.05 range, whereas for x ≥ 0.1 compounds such as spinel-type La2NiO4, NiO and CaO were observed in addition to the perovskite oxide. On the other hand, segregation of NiO, even in the unsubstituted perovskite (x = 0.0), was confirmed by TPR and XPS. The catalytic tests showed that the replacement of La by Ca, which has a lower ionic radius, favored a higher activity and stronger resistance to carbon deposition. However, this coking resistance depended on the Ca-loading and the catalysts with x = 0.05 and x = 0.8 were the most stable against deactivation.  相似文献   

7.
The electronic charge carrier concentration in La1?x Sr x FeO3?δ was shown to depend on the partial pressure of O2 (pO 2). Chemical diffusion coefficient and surface exchange coefficient, k chem, were determined by conductivity relaxation in O2/N2 and CO/CO2 mixtures. k chem was proportional to pO 2 1.06 in O2/N2, while in CO/CO2 k chem was controlled by a reaction mechanism involving both CO and CO2.  相似文献   

8.
《Ceramics International》2016,42(9):11093-11098
In this paper, we report nonlinear optical properties of a composite nanostructure with the general formula (1−x) CaFe2O4–(x) BaTiO3 (x=0, 0.1, 0.3, 0.5, 0.7, 0.9, and 1) prepared by sol–gel and conventional solid-state reaction methods. Structural properties and chemical compositions of the samples were characterized using XRD and HRTEM. Basic optical constants, band gap energy and linear absorption coefficient were calculated through optical absorbance measurements. The nonlinear optical properties were investigated using the single-beam open aperture Z-scan technique. The obtained nonlinearity fits to Two-photon absorption process and all samples display high nonlinear absorption effect. The incorporation of BaTiO3 into CaFe2O4 systems show a significant improvement in the nonlinear optical properties. These composite that exhibit efficient optical limiting can have potential applications in photonic devices.  相似文献   

9.
《Ceramics International》2017,43(7):5585-5591
Two series of single-phased LaxSr(2−x)Fe(1+y)Mo(1−y)O6 and LaxSr(2−x)Fe(1+0.5y)Al0.5yMo(1−y)O6 (x=3y, y=0.05, 0.1, 0.15 and 0.2) double perovskites were prepared by solid-state reaction. The effects of Al-substitution on the structures, resistivity and magnetic properties of LaxSr(2−x)Fe(1+y)Mo(1−y)O6 were investigated. Although Al-replacement exhibits a negligible influence of on the B-site ordering degree, it results in the suppression of magnetisation caused by non-magnetic Al3+ ions. Reduction of grain sizes leads to increased resistivity, thus an optimised magnetoresistance (MR) behaviour is observed. The greatest MR extent improvement can be obtained when y is 0.15 and the MR% of the Al-doped ceramics reaches −10.5% (10 K, 1 T), which is 2 times greater than that of the undoped ceramics (−4.6%, 10 K, 1 T). Interestingly, the Curie temperature (Tc) of both Al-doped and undoped samples maintained relatively constant values of approximately 420 K and 405 K, respectively, which were different results from the data obtained for similar electron-doping systems in the literature.  相似文献   

10.
Optical characterization methods, like spectrophotometry at UV–vis-NIR wavelengths and prism-coupler method, were applied to polycrystalline Pb(ZrxTi1?x)O3 thin films at various thicknesses. Thin films were deposited at room temperature by pulsed laser deposition on MgO (1 0 0) substrates and post-annealed at different temperatures. X-ray diffraction and atomic force microscopy were used to characterize the crystal structure and surface morphology of the thin films, respectively.Well oscillating transmission with a sharp fall near the absorption edge was found in films with high orientation and low surface roughness. Changes in the surface morphology and crystal orientation were found to modulate optical interference maxima and minima of the transmittance spectra and to increase the width of the TE0 mode (Δβ  0.06) indicating an increase in the scattering losses of the films. Single-phase oriented films had sharpest coupling values (Δβ  0.005) of the TE0 mode.  相似文献   

11.
12.
《Ceramics International》2017,43(11):8534-8537
Ca0.6La0.8/3(SnxTi1−x)O3 ceramics were prepared via a conventional solid state reaction method, and the effect of Sn doping on their crystal phase structure and microwave dielectric properties was investigated. Results showed that Sn doping could hinder the formation of the rutile TiO2 detrimental phase of Ca0.6La0.8/3TiO3 ceramic. Also, the Q×f0 value was enhanced and the τf value was lowered by Sn doping. The best microwave dielectric properties, i. e. εr=113 and Q×f0=8487 GHz were obtained for a Sn doping content of 0.02. The mechanism of the improved properties deriving by Sn doping is discussed.  相似文献   

13.
In this study, MgO.(Fe2O3)1−x(Bi2O3)x (x = 0.01, 0.02, 0.04, 0.08) samples were prepared by the conventional ceramic process. Microstructure studies revealed that the samples contain MgFe2O4 grains surrounded by insulating Bi2O3-rich phases. DC electrical resistivity of the samples was increased by Bi2O3 content up to 1.1 MΩ.cm for the sample with x = 0.08. Current density- electric field investigations suggested that the samples with x = 0.01, 0.02 and 0.04 exhibited varistor properties. The sample with x = 0.01 showed excellent varistor properties with a non-linear coefficient of 45 and a threshold electric field value of 160 V/cm. Variation of D.C electrical conductivity versus temperature indicated that the activation energy values for the conduction were increased by Bi2O3 content from 0.334(5) eV to 0.857(5) eV. A.C electrical conductivity spectra of the samples obey the universal power law and the charge transport mechanism is based on electron hopping via sudden translational motion between the ferric and ferrous ions.  相似文献   

14.
15.
High Tc Y1−x Yb x Ba2Cu3O7−y films were prepared on SrTiO3(100) substrates by chemical vapor deposition method. Yb1Ba2Cu3O7−y films were obtained at higher oxygen partial pressure compared with Y1Ba2Cu3O7−y films at the same deposition temperature. Tc,o (R=0) decreased about 1.5 K when Y was fully substituted with Yb. The caxis lattice parameter of Y1−x Yb x Ba2Cu3O7−y films also decreased as the amount of Yb(x) increased.  相似文献   

16.
17.
The paper reports the preparation, structure and electrical properties of oxide ceramic semiconductors based on the series SrxLa1−x TiIVx+yCoIIyCoIII1−x−2yO3 with perovskite type stucture: 0<x<1, 0<y<(1−x)/2. The study starts from LaCoO3 which is highly conductive yielding metallic condutivity above 330°C. The upset trigonal distortion of LaCoO3 is reduced when SrII/TiIV is substituted for LaIII/CoIII corresponding to increasing values of x and also when 2 CoIII are introduced for TiIV/CoII into the lattice corresponding to increasing values of y. At high values of x and y othorhombic distortion occurs. At the same time, the interaction between the CoIII atoms of LaCoO3 is increasingly interrupted providing increasing values of the the resistivity value ρ25°C and of the B25/100°C value deduced from measurements at 25 and 100°C according to ρ(T )=ρ25°C eB/T. The range of variation of x an y makes possible to prepare ceramics with desired electrical properties within the limits of ρ25°C=1.1 Ωcm, B=1910 K and ρ25°C=1 bis 8×106 Ωcm at B-values up to 6500 K. Dependent on composition, NTC ceramics for thermistor or insurance applications are accessible. Thermistors do not show aging even at higher temperature, e.g. at 500°C, provided the single phase state is achieved as a result of mixed oxide preparation and sintering. Hence, high temperature thermistor applications are also made possible. The semiconductor behavior can be understood using the conventional polaron state hopping model.  相似文献   

18.
Low temperature 57Fe Mössbauer spectroscopic studies on CaO(Fe2O3)1−x(Al2O3)x, written as CF1−xAx, have been carried out. In view of the earlier findings based on room temperature data, the spectra have been analysed by assuming three Fe sites: two belonging to CF phase and the third site for the Fe atoms distributed in the CA phase. The Fe sites pertaining to the CF phase experience hyperfine field of about 49T and 47T, respectively, at 20K; whereas the third site is paramagnetic at this temperature.  相似文献   

19.
《Ceramics International》2016,42(9):10608-10613
xBaTiO3–(1−x)(0.5Bi(Mg1/2Ti1/2)O3-0.5BiScO3) or xBT–(1−x)(0.5BMT–0.5BS) (x=0.45–0.60) ceramics were prepared by using the conventional mixed oxide method. Perovskite structure with pseudo-cubic symmetry was observed in all the compositions. Dielectric measurement results indicated that all the samples showed dielectric relaxation behavior. As the content BaTiO3 was decreased from 0.60 to 0.45, temperature coefficient of permittivity (TCε) in the range of 200–400 °C was improved from −706 to −152 ppm/°C, while the permittivity at 400 °C was increased from 1208 to 1613. The temperature stability of permittivity was further improved by using 2 mol% Ba-deficiency. It was found that lattice parameter and grain size of the 2 mol% Ba-deficient ceramics were smaller than those of their corresponding stoichiometric (S) counterparts, with TCε in the range of 200–400 °C to be improved noticeably. For example, TCε of the Ba-deficiency sample with x=0.45 was −75 ppm/°C in the temperature range of 200–400 °C and the permittivity was 1567 at 400 °C. The results obtained in this work indicated that xBT–(1−x)(0.5BMT–0.5BS) ceramics are very promising candidates for high temperature capacitor applications.  相似文献   

20.
《Ceramics International》2017,43(12):8715-8720
Electrospun LaxSr1−xCo1−yFeyO3 (LSCF) fibers with y=0.2 – 1.0 have been investigated as the cathode of intermediate solid oxide fuel cells (IT-SOFC). The electrochemical performances of LSCF (y=0.2–1.0) fibers were studied by impedance spectroscopy in symmetrical cells containing gadolinium doped ceria (CGO) electrolyte and LSCF electrode infiltrated with CGO. Impedance measurements showed that the impedance spectra have two or three semicircles, depending on the measurement temperature. The LSCF electrodes with higher cobalt content exhibit lower polarization resistance (Rp) and the La0.6Sr0.4Co0.8Fe0.2O3 electrode displayed the lowest polarization resistance between 500 and 900 °C, classifying this composite cathode as a promising material for intermediate temperature SOFC based on CGO electrolyte.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号