首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 203 毫秒
1.
为提高果园机器人自主导航和果园作业的质量、效率,该研究提出一种基于改进YOLOv3算法对果树树干进行识别,并通过双目相机进行定位的方法。首先,该算法将SENet注意力机制模块融合至Darknet53特征提取网络的残差模块中,SENet模块可增强有用特征信息提取,压缩无用特征信息,进而得到改进后残差网络模块SE-Res模块;其次,通过K-means聚类算法将原始YOLOv3模型的锚框信息更新。果树树干定位通过双目相机的左、右相机对图像进行采集,分别传输至改进YOLOv3模型中进行果树树干检测,并输出检测框的信息,再通过输出的检测框信息对左、右相机采集到的果树树干进行匹配;最后,通过双目相机三角定位原理对果树树干进行定位。试验表明,该方法能较好地对果树树干进行识别和定位,改进YOLOv3模型平均精确率和平均召回率分别为97.54%和91.79%,耗时为0.046 s/帧。在果树树干定位试验中,横向和纵向的定位误差均值分别为0.039 和0.266 m,误差比均值为3.84%和2.08%;与原始YOLOv3和原始SSD模型相比,横向和纵向的定位误差比均值分别降低了15.44、14.17个百分点和21.58、20.43个百分点。研究结果表明,该方法能够在果园机器人自主导航、开沟施肥、割草和农药喷洒等作业中进行果树识别和定位,为提高作业效率、保障作业质量奠定理论基础。  相似文献   

2.
为解决果园机器视觉导航中果树行识别易受果园复杂环境干扰的问题,该研究提出一种采用动态选取融合因子对彩色图像与深度图像进行图层融合并采用纹理-灰度梯度能量模型进行图像分割的果树行视觉识别算法。首先,通过搭建立体视觉系统获取果园彩色图像与对应的深度图像,并基于饱和度(S)通道图像的灰度值选取动态融合因子,实现对果园彩色图像与深度图像的图层融合;然后,分别计算融合图像的纹理特征图像与灰度梯度特征图像,并建立纹理-灰度梯度结合的能量模型,基于模型能量最小原则进行树干与背景的分割;最后,以树干与地面交点为果树行特征点进果树行直线拟合,完成果树行角度的识别。并对上述算法分别进行果树行识别试验与移动作业平台视觉对行导航试验。果树行识别试验结果表明,该研究算法果树行角度识别平均偏差为2.81°,与基于纹理、灰度梯度特征的果树行识别算法相比识别平均偏差分别降低2.37°和1.25°。移动作业平台视觉导航试验结果表明,在作业平台速度为0.6 m/s时,对行行驶最大偏差为12.2 cm,平均偏差为5.94 cm。该研究提出的视觉导航算法可以满足果园移动作业平台视觉对行导航需求,研究成果将为基于机器视觉的果园自动导航系统的研究与优化奠定基础。  相似文献   

3.
针对矮化密植枣园环境的复杂性,提出一种基于图像处理的枣园导航基准线生成算法。选用B分量图进行处理,提出"行阈值分割"方法分割树干与背景;根据拍摄场景及视角提出"行间区域"方法剔除行间噪声;通过统计树干与地面交点位置分布区域选取图像五分之二向下区域进行处理;依据树干纵向灰度分布规律,采用浮动窗口灰度垂直投影方法结合形态学开闭运算提取树干区域;基于枣园行间线性分布特征引入"趋势线",而后利用点到直线的距离与设定阈值作比较选取树干与地面的交点;利用交点的位置分布将其归类,并采用最小二乘法原理拟合左右两侧边缘,提取边缘线上各行的几何中心点生成枣园导航基准线。通过对阴天、晴天、顺光、逆光、噪声多元叠加5种条件进行试验,结果表明,该算法具有一定的抗噪性能,单一工况条件导航基准线生成准确率可达83.4%以上,多工况条件准确率为45%。针对5种工况条件的视频检测,结果表明,单一工况条件算法动态检测准确率可达81.3%以上,每帧图像处理平均耗时低于1.7 s,多工况条件检测准确率为42.3%,每帧图像平均耗时1.0 s。该研究可为矮化密植果园实现机器人自主导航作业提供参考。  相似文献   

4.
针对破壳鸡蛋(破口蛋和裂纹蛋)缺陷差异性大,在线检测要求实时,以及人工检测依靠主观经验且检测速度慢、检测精度不高等问题,该研究提出一种基于改进的YOLOv7(You Only Look Once v7)模型的破壳鸡蛋在线实时检测系统。即以YOLOv7网络为基础,将YOLOv7网络的损失函数CIoU(complete-IoU)替换为WIoUv2(wise-IoU),在骨干网络(backbone)中嵌入坐标注意力模块(coordinate attention,CA)和添加可变形卷积DCNv2(deformable convnet)模块,同时将YOLOv7网络中的检测头(IDetect)替换为具有隐式知识学习的解耦检测头(IDetect_Decoupled)模块。在PC端的试验结果表明,改进后的模型在测试集上平均精度均值(mean average precision,mAP)为94.0%,单张图片检测时间为13.1 ms,与模型改进之前相比,其mAP提高了2.9个百分点,检测时间仅延长1.0 ms;改进后模型的参数量为3.64×107,较原始模型降低了2.1%。最后通过格式转换并利用ONNXRuntime深度学习框架把模型部署至设备端,在ONNXRuntime推理框架下进行在线检测验证。试验结果表明:该算法相较原始YOLOv7误检率降低了3.8个百分点,漏检率不变,并且在线检测平均帧率约为54帧/s,满足在线实时性检测需求。该研究可为破壳鸡蛋在线检测研究提供技术参考。  相似文献   

5.
基于改进YOLOv7模型的复杂环境下鸭蛋识别定位   总被引:1,自引:1,他引:0  
在干扰、遮挡等复杂环境下,对鸭蛋进行快速、准确识别定位是开发鸭蛋拾取机器人的关键技术,该研究提出一种基于改进YOLOv7(you only look once)模型的复杂环境鸭蛋检测方法,在主干网络加入卷积注意力模块(CBAM,convolutional block attention module),加强网络信息传递,提高模型对特征的敏感程度,减少复杂环境对鸭蛋识别干扰;利用深度可分离卷积(DSC,depthwise separable convolution)、调整空间金字塔池化结构(SPP,spatial pyramid pooling),降低模型参数数量和运算成本。试验结果表明,与SSD、YOLOv4、YOLOv5_M以及YOLOv7相比,改进YOLOv7模型的F1分数(F1 score)分别提高了8.3、10.1、8.7和7.6个百分点,F1分数达95.5%,占内存空间68.7 M,单张图片检测平均用时0.022 s。与不同模型在复杂环境的检测对比试验表明,改进的YOLOv7模型,在遮挡、簇拥、昏暗等复杂环境下,均能对鸭蛋进行准确快速的识别定位,具有较强鲁棒性和适用性。该研究可为后续开发鸭蛋拾取机器人提供技术支撑。  相似文献   

6.
为实现自然环境下的板栗果实目标快速识别,该研究以湖北省种植板栗为研究对象,提出了一种基于改进YOLOv8模型的栗果识别方法YOLOv8-PBi。首先,将部分卷积(partial convolution,PConv)引入C2f模块中,缩减卷积过程中的浮点数和计算量;其次,引入加权双向特征金字塔网络(bidirectional feature pyramid network,BiFPN),增强多尺度特征融合性能,最后,更改边界框损失函数为动态非单调聚焦机制WIoU(wise intersection over union,WIoU),提高模型收敛速度,进一步提升模型检测性能。试验结果表明,改进YOLOv8-PBi模型准确率、召回率和平均精度分别为89.4%、74.9%、84.2%;相比原始基础网络YOLOv8s,模型权重减小46.22%,准确率、召回率和平均精度分别提升1.3、1.5、1.8个百分点。部署模型至边缘嵌入式设备上,经过TensorRT加速后,检测帧率达到43 帧/s。该方法可为板栗智能化收获过程中的栗果识别提供技术基础。  相似文献   

7.
为实现花椒簇的快速准确检测,该研究提出了一种基于改进YOLOv5s的花椒簇检测模型。首先,使用MBConv(MobileNetV3 block convolution,MBConv)模块和基于ReLU的轻量级自注意力机制优化了EfficientViT网络,用其代替YOLOv5s的主干,减少模型的参数量、增强模型对重要特征的表达能力。其次,在模型的训练过程中采用了OTA(optimal transport assignment)标签分配策略,优化训练中的标签分配结果。最后,使用WIoU损失函数对原损失函数CIoU进行替换,提高锚框的质量。试验结果表明,改进YOLOv5s模型的平均准确度均值(mean average precision,mAP)为97.3%、参数量为5.9 M、检测速度为131.6帧/s。相较于YOLOv5s模型,mAP提升1.9个百分点、参数量降低15.7%、检测速度提高14.5%。结果表明,该研究提出的改进YOLOv5s模型准确度高、参数量低、检测速度快,可实现对花椒簇的有效检测。  相似文献   

8.
基于改进YOLOv5s的自然环境下猕猴桃花朵检测方法   总被引:2,自引:2,他引:0  
为实现对猕猴桃花朵的快速准确检测,该研究提出了一种基于改进YOLOv5s的猕猴桃花朵检测模型YOLOv5s_S_N_CB_CA,并通过对比试验进行了精度验证。在YOLOv5s基础上引入C3HB模块和交叉注意力(criss-cross atte ntion,CCA)模块增强特征提取能力,结合样本切分和加入负样本处理方法进一步提升模型精度。改进模型的检测精确率为85.21%,召回率为90%,模型大小为14.6 MB,交并比(intersection over union,IoU)为0.5下的均值平均精度(mAP0.5)为92.45%,比仅进行样本缩放处理的原始YOLOv5s提高了31.91个百分点,检测速度为35.47帧/s,比原始YOLOv5s提高了34.15%。使用改进模型对自然环境下不同天气、晴天不同时段光照强度下的猕猴桃花朵进行检测,结果表明模型检测晴天、阴天下猕猴桃花朵的mAP0.5分别为91.96%、91.15%,比原始YOLOv5s分别高出2.55、2.25个百分点;检测晴天9:00-11:00、15:00-17:00光强下猕猴桃花...  相似文献   

9.
为提高自然环境下生姜叶片病虫害的识别精确率,提出一种基于改进YOLOv5s的生姜叶片病虫害识别模型。建立了田间不同自然环境条件下的生姜叶片病虫害数据集,为保证模型在田间移动设备上流畅运行,实现网络模型的轻量化,在YOLOv5s中引入GhostNet网络中的Ghost模块和Ghost BottleNeck结构。同时,为避免生姜叶片病虫害图像小目标特征丢失的情况,增强图像特征提取,加入CA注意力机制模块,提升生姜叶片病虫害的识别准确率和定位精确度。改进后的模型参数量、计算量和权重文件大小分别为YOLOv5s模型的52.0%、50.6%和55.2%,对生姜叶片病虫害识别平均精度均值达到了83.8%。与Faster-RCNN、SSD、YOLOv4、YOLOv5s、Tea-YOLOv5s等算法相比,平均精度均值分别提高37.6、39.1、22.5、1.5、0.7个百分点,将改进后的目标检测模型部署在Jetson Orin NX开发板上,并使用TensorRT、Int8量化和CUDA等方法对检测模型加速,加速后的模型检测速度为74.3帧/s,满足实时检测的要求,测试结果显示,改进后的模型减少了漏检、误检的情况,并且对目标定位更加精准,适用于自然环境下生姜叶片病虫害的精准识别,为后续生姜机械自动化施药作业提供技术理论支持。  相似文献   

10.
芽眼精准检测是实现马铃薯种薯智能化切块的前提,但由于种薯芽眼区域所占面积小、可提取特征少以及种薯表面背景复杂等问题极易导致芽眼检测精度不高。为实现种薯芽眼精准检测,该研究提出一种基于改进YOLOv7的马铃薯种薯芽眼检测模型。首先在Backbone部分增加Contextual Transformer自注意力机制,通过赋予芽眼区域与背景区域不同权值大小,提升网络对芽眼的关注度并剔除冗余的背景信息;其次在Head部分利用InceptionNeXt模块替换原ELAN-H模块,减少因网络深度增加而造成芽眼高维特征信息的丢失,更好地进行多尺度融合提升芽眼的检测效果;最后更改边界框损失函数为NWD,降低损失值,加快网络模型的收敛速度。经试验,改进后的YOLOv7网络模型平均准确率均值达到95.40%,较原始模型提高4.2个百分点。与同类目标检测模型Faster-RCNN(ResNet50)、Faster-RCNN(VGG)、SSD、YOLOv3、YOLOv4、YOLOv5n、YOLOX相比,其检测精度分别高出34.09、26.32、27.25、22.88、35.92、17.23和15.70个百分点。...  相似文献   

11.
快速精准识别棚内草莓的改进YOLOv4-Tiny模型   总被引:5,自引:5,他引:0  
为了实现棚内草莓果实的快速精准识别,该研究提出一种基于改进YOLOv4-Tiny的草莓检测模型。首先,为了大幅度减少模型计算量,采用轻量型网络GhostNet作为特征提取网络,并在GhostBottleneck结构中嵌入卷积注意力模块以加强网络的特征提取能力;其次,在颈部网络中添加空间金字塔池化模块和特征金字塔网络结构,融合多尺度特征提升小目标草莓的检测效果;最后,采用高效交并比损失作为边界框回归损失函数,加速网络收敛并提高模型的检测准确率。结果表明,改进YOLOv4-Tiny模型权重大小仅为4.68 MB,平均每幅图片的检测时间为5.63 ms,在测试集上的平均精度均值达到92.62%,相较于原YOLOv4-Tiny模型提升了5.77个百分点。与主流的目标检测模型SSD、CenterNet、YOLOv3、YOLOv4和YOLOv5s相比,改进YOLOv4-Tiny模型平均精度均值分别高出9.11、4.80、2.26、1.22、1.91个百分点,并且模型权重大小和检测速度方面均具有绝对优势,该研究可为后续果实智能化采摘提供技术支撑。  相似文献   

12.
为解决自然环境中苹果叶片病害检测场景复杂、小目标病害检测难度高以及模型参数大无法在移动端和嵌入式设备部署等问题,提出一种基于YOLOv5s的苹果叶片小目标病害轻量化检测方法。该方法将YOLOv5s的骨干网络更改为ShuffleNet v2轻量化网络,引入CBAM(convolutional block attention module)注意力模块使模型关注苹果叶片小目标病害,添加改进RFB-s(receptive field block-s)支路获取多尺度特征,提高苹果叶片病害检测精度,并更改边界框回归损失函数为SIoU(scylla-intersection over union),增强病斑定位能力。试验表明改进后的YOLOv5s模型在IoU大于0.5时的平均精度均值(mean average precision,mAP0.5)和每秒传输帧数(frame per second,FPS)分别达到90.6%和175帧/s,对小目标的平均检测准确率为38.2%,与基准模型YOLOv5s相比,其mAP0.5提升了0.8个百分点,参数量减少了6.17 MB,计算量减少了13.8 G,对小目标的检测准确率提高了3个百分点。改进后的YOLOv5s目标检测模型与Faster R-CNN、SSD、YOLOv5m、YOLOv7、YOLOv8和YOLOv5s目标检测模型相比,具有最小的参数量和计算量,对小目标病害叶斑病和锈病的检测准确率分别提高了1.4、4.1、0.5、5.7、3.5、3.9和1.5、4.3、1.2、2.1、4、2.6个百分点,该方法为真实自然环境下苹果叶片病害尤其是小目标病害的轻量化检测提供参考依据。  相似文献   

13.
柑橘表面缺陷是水果检测分级的重要依据,针对传统柑橘表面缺陷检测方法效率低、精度低等问题,该研究提出一种柑橘表面缺陷的实时检测方法。该方法首先对柑橘图像进行图像增强,然后利用提出的YOLOv7-CACT模型对柑橘表面缺陷进行检测,该模型在YOLOv7模型骨干网络中引入坐标注意力模块(coordinate attention, CA),从而提高模型对缺陷部分的关注度。在网络头部引入CT(contextual transformer,CT)模块,融合静态和动态上下文表征特征,从而增强缺陷部分特征表达能力。通过试验确定CA模块和CT模块的最佳位置。改进后的YOLOv7-CACT模型检测结果平均精度均值(mean average precision,mAP)相较于原始模型增加了4.1个百分点,达到91.1%,满足了实际生产中对柑橘缺陷检测精度的要求。最后将基于YOLOv7-CACT的柑橘检测模型通过TensorRT进行部署,试验结果表明模型的推理时间满足柑橘生产线10个/s的实时分选要求,总体的检测精度达到94.4%,为柑橘表面缺陷在线检测提供了一种精准的实时检测方法。  相似文献   

14.
棉田虫害的快速检测与准确识别是预防棉田虫害、提高棉花品质的重要前提。针对真实棉田环境下昆虫相似度高、背景干扰严重的问题,提出一种ECSF-YOLOv7棉田虫害检测模型。首先,采用EfficientFormerV2作为特征提取网络,以加强网络的特征提取能力并减少模型参数量;同时,将卷积注意力模块(convolution block attention module,CBAM)嵌入到模型的主干输出端,以增强模型对小目标的特征提取能力并削弱背景干扰;其次,使用GSConv卷积搭建Slim-Neck颈部网络结构,在减少模型参数量的同时保持模型的识别精度;最后,采用Focal-EIOU(focal and efficient IOU loss,Focal-EIOU)作为边界框回归损失函数,加速网络收敛并提高模型的检测准确率。结果表明,改进的ECSF-YOLOv7模型在棉田虫害测试集上的平均精度均值(mean average precision,mAP)为95.71%,检测速度为69.47帧/s。与主流的目标检测模型YOLOv7、SSD、YOLOv5l和YOLOX-m相比,ECSF-YOLOv7模型的mAP分别高出1.43、9.08、1.94、1.52个百分点,并且改进模型具有参数量更小、检测速度更快的优势,可为棉田虫害快速准确检测提供技术支持。  相似文献   

15.
为提高香蕉采摘机器人的作业效率和质量,实现机器人末端承接机构的精确定位,该研究提出一种基于YOLOv5算法的蕉穗识别,并对蕉穗底部果轴进行定位的方法。将CA(Coordinate Attention)注意力机制融合到主干网络中,同时将C3(Concentrated-Comprehensive Convolution Block)特征提取模块与CA注意力机制模块融合构成C3CA模块,以此增强蕉穗特征信息的提取。用 EIoU(Efficient Intersection over Union)损失对原损失函数CIoU(Complete Intersection over Union)进行替换,加快模型收敛并降低损失值。通过改进预测目标框回归公式获取试验所需定位点,并对该点的相机坐标系进行转换求解出三维坐标。采用D435i深度相机对蕉穗底部果轴进行定位试验。识别试验表明,与YOLOv5、Faster R-CNN等模型相比,改进YOLOv5模型的平均精度值(mean Average Precision, mAP)分别提升了0.17和21.26个百分点;定位试验表明,采用改进YOLOv5模型对蕉穗底部果轴定位误差均值和误差比均值分别为0.063 m和2.992%,与YOLOv5和Faster R-CNN模型相比,定位误差均值和误差比均值分别降低了0.022 m和1.173%,0.105 m和5.054%。试验实时可视化结果表明,改进模型能对果园环境下蕉穗进行快速识别和定位,保证作业质量,为后续水果采摘机器人的研究奠定了基础。  相似文献   

16.
基于改进型YOLOv4的果园障碍物实时检测方法   总被引:9,自引:6,他引:3  
针对农业机器人在复杂的果园环境中作业时需要精确快速识别障碍物的问题,该研究提出了一种改进型的YOLOv4目标检测模型对果园障碍物进行分类和识别。为了减少改进后模型的参数数量并提升检测速度,该研究使用了深度可分离卷积代替模型中原有的标准卷积,并将主干网络CSP-Darknet中的残差组件(Residual Unit)改进为逆残差组件(Inverted Residual Unit)。此外,为了进一步增强模型对目标密集区域的检测能力,使用了软性非极大值抑制(Soft DIoU-Non-Maximum Suppression,Soft-DIoU-NMS)算法。为了验证该研究所提方法的有效性,选取果园中常见的3种障碍物作为检测对象制作图像数据集,在Tensorflow深度学习框架上训练模型。然后将测试图片输入训练好的模型中检测不同距离下的目标障碍物,并在同一评价指标下,将该模型的测试结果与改进前YOLOv4模型的测试结果进行评价对比。试验结果表明,改进后的YOLOv4果园障碍物检测模型的平均准确率和召回率分别为96.92%和91.43%,视频流检测速度为58.5帧/s,相比于原模型,改进后的模型在不损失精度的情况下,将模型大小压缩了75%,检测速度提高了29.4%。且改进后的模型具有鲁棒性强、实时性更好、轻量化的优点,能够更好地实现果园环境下障碍物的检测,为果园智能机器人的避障提供了有力的保障。  相似文献   

17.
为解决传统小肠绒毛需要专业人员手动检测耗时耗力且存在主观性和不稳定性等问题,同时提高在复杂病理学图像中小肠绒毛检测的准确率和效率,该研究提出基于改进YOLOv5s检测复杂病理学图像下猪只小肠绒毛的方法。首先,采用串联形式的混合池化对空间金字塔进行优化,增强特征提取与特征表达,提升检测精度;然后引入一种基于注意力机制的网络模块(simpleattentionmechanism,SimAM)与Bottleneck中的残差连接相结合,使用SimAM对Bottleneck中的特征图进行加权,得到加权后的特征表示,利用注意力机制加强模型对目标的感知。试验结果表明,该研究算法的平均精度(average precision)和每秒传输帧数(frame per second,FPS)达到92.43%和40帧/s。改进后的YOLOv5s在召回率和平均精度上相较改进前提高2.49和4.62个百分点,在不增加模型参数量的情况下,每帧图片的推理时间缩短1.04 ms。与经典的目标检测算法SSD、Faster R-CNN、YOLOv6s、YOLOX相比,平均精度分别提高15.16、10.56、2.03和4.07...  相似文献   

18.
融合坐标注意力机制的轻量级玉米花丝检测   总被引:1,自引:1,他引:0  
玉米花丝性状是玉米生长状态的重要表征,也是决定玉米果穗生长进而影响玉米产量的重要因素。为了提升无人巡检机器人视觉系统对玉米花丝的检测精度和速度,该研究提出一种融合坐标注意力机制的轻量级目标检测网络YOLOX-CA。将坐标注意力机制(coordinate attention,CA)模块嵌入到YOLOX-s主干特征网络(Backbone)部分,以加强对关键特征的提取,提升检测精度;在颈部特征加强网络(Neck)部分,将特征金字塔结构中的普通卷积,更改为深度可分离卷积,在降低网络参数量的同时保证精度不丢失;在预测头(Head)部分引入GIoU(generalized intersection over union)改进定位损失函数计算,得到更为精准的预测结果。基于自建玉米花丝数据集训练和测试网络,试验结果表明,YOLOX-CA网络平均检测精确度达到97.69%,参数量低至8.35 M。在同一试验平台下,相较于YOLOX-s、YOLOv3、YOLOv4等目前主流的目标检测网络,平均检测精确度分别提升了2.21、3.22和0.64个百分点;相较于YOLOv3、YOLOv4,每帧推理时间分别缩短4...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号