首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
Watershed planning groups and action agencies seek to understand how lake water quality responds to changes in watershed management. This study developed and demonstrated the applicability of an integrated modeling approach for providing this information. An integrated model linking watershed conditions to water-quality of the receiving lake incorporated the following components: (1) an event-based AGNPS model to estimate watershed pollutant losses; (2) annualization of AGNPS results to produce annual lake pollutant loadings; (3) a base flow separation package, SAM, to estimate base flow; (4) estimates of nutrients in base flow and point sources; and (5) linkage of watershed loadings directly to EUTROMOD lake water quality algorithms. Results are presented for Melvern Lake, a 28-km2 multipurpose reservoir with a 900-km2 agricultural watershed in east central Kansas. Reasonable estimates of current lake quality were attained using an average phosphorus availability factor of 31 percent to calibrate model results to measured in-lake phosphorus. Comparison of a range of possible scenarios, including all cropland changed to no-till (best case) and all CRP and good-condition grasslands changed to cropland (worst case), indicated only a (4 percent change for in-lake phosphorus and a (2 percent change for chlorophyll a. These results indicated that this watershed is not sensitive to projected changes in land use and management.  相似文献   

2.
ABSTRACT: The impact on water quality by agricultural activity in karst terrain is an important consideration for resource management within the Appalachian Region. Karst areas comprise about 18 percent of the Region's land area. An estimated one-third of the Region's farms, cattle, and agricultural market value are on karst terrain. Nitrate concentrations were measured in cave streams draining two primary land management areas. The first area was pasture serving a beef cow-calf operation. The second area was a dairy. Nitrate-N concentrations were highest in cave streams draining the dairy and a cave stream draining an area of pasture where cattle congregate for shade and water. The dairy contributed about 60 to 70 percent of the nitrogen load increase in the study section of the cave system. It was concluded that agriculture was significantly affecting nitrate concentrations in the karst aquifer. Best management practices may be one way to protect the ground water resource.  相似文献   

3.
ABSTRACT: An extensive base of water quality information emphasizing the effects of land use and hydrology was obtained in the karstified Fountain Creek watershed of southwestern Illinois to help resolve local water quality issues. Agrichemicals dominate the loads of most water quality constituents in the streams and shallow karstic ground water. Only calcium (Ca), magnesium (Mg), Aluminum (A1), and sulfate (SO4) ions are predominantly derived from bedrock or soils, while agrichemicals contribute most of the sodium (Na), potassium (K), chlorine (Cl), nitrate (NO3), fluorine (F), phosphorus (P), and atrazine. Concentrations of individual ions correlate with discharge variations in karst springs and surface streams; highly soluble ions supplied by diffuse ground water are diluted by high flows, while less soluble ions increase with flow as they are mobilized from fields to karst conduits under storm conditions. Treated wastewater containing detergent residues dominates the boron load of streams and provides important subordinate loads of several other constituents, including atrazine derived from the Mississippi River via the public water supply. Average surface water concentrations at the watershed outlet closely approximate a 92:8 mixture of karst ground water and treated wastewater, demonstrating the dominance of ground water contributions to streams. Therefore the karst aquifer and watershed streams form a single water quality system that is also affected by wastewater effluent.  相似文献   

4.
ABSTRACT: Enforceable standards play a crucial role in the design and implementation of most water quality policies. The impacts of these standards on farm income and nonpoint source (NPS) pollution can provide valuable information to develop economic policies that can improve water quality with minimal loss in income and minimal risk. This study uses an integration of nonlinear programming and a simulation model to assess the impacts of enforceable standards at technology and farm boundary levels. The results indicate that the type of pollutant regulated, enforcement type, and the level of standard had a significant impact on farm income and water quality. Choice of farm boundary standards over technology standards is dependent on the impact of the policy on other NPS pollutants, in addition to the reduction of nitrate and phosphorus pollutants. Enforcing farm boundary standards on nitrates had desirable effects on subsurface and percolate nitrogen and variance in income. Technology standards were uncertain in their effects because of the restriction on the choice of technologies available to farmers. A comparative policy analysis considering incentives, multiple impacts, transaction costs of implementation, and regional consideration is important to an effective policy design.  相似文献   

5.
ABSTRACT: . Under a watershed based approach being examined by the Quebec Ministry of Agriculture to accelerate the adoption of conservation practices, a study on the impacts of agricultural practices on the St. Esprit watershed was initiated in the fall of 1993. The water quality of this 26 km2 intensive agricultural watershed was studied over an 18 month period. Water samples taken at the outlet of the watershed were analyzed for nitrate, phosphate, suspended sediment, and atrazine. Water quality data were analyzed to establish seasonal trends in pollutant concentration and load in the watercourse. Spring snowmelt was identified as a significant period of pollutant material export. All pollutant materials displayed seasonal variability in the export process. Peak pollutant concentrations were associated with high flow events. Mean observed pollutant concentrations did not exceed drinking water quality standards.  相似文献   

6.
ABSTRACT: The impact on water quality by agricultural activity in karst terrain is an important consideration for resource management within the Appalachian Region. Karst areas comprise about 18 percent of the Region's land area. An estimated one-third of the Region's farms, cattle, and agricultural market value are located on karst terrain. Nitrate concentrations were measured in several karst springs in Southeastern West Virginia in order to determine the impact of animal agriculture on nitrate pollution of the karst ground water system. Karst basins with 79, 51, 16, and 0 percent agriculture had mean nitrate concentrations of 15.8, 12.2, 2.7, and 0.4 mg/l, respectively. A strong linear relationship between nitrate concentration and percent agricultural land was shown. Median nitrate concentration increased about 0.19 mg l-1 per percent increase in agricultural land. Weather patterns were also found to significantly affect the median nitrate concentrations and the temporal variability of those concentrations. Lower nitrate concentrations and lower temporal variability were observed during a severe drought period. It was concluded that agriculture was significantly affecting nitrate concentrations in the karst aquifer. Best management practices may be one way to protect the ground water resource.  相似文献   

7.
ABSTRACT: A model for urban stormwater quality was developed in this study. The basis for the model is the process by which pollutants build up on the watershed surface. For the wet climate of the study site, it was assumed that there exists an interval of time over which the pollutant buildup equals the pollutant washoff (no accumulation of pollutant). The buildup model was represented by a linear function of the antecedent dry time. The buildup function was then linked with a pollutant washoff model represented by a power function of the storm runoff volume. Various time intervals for no net accumulation were tested to calibrate the model. The model was calibrated to observed data for two small urban basins in Baton Rouge, Louisiana, and model results were used to analyze the behavior of phosphorus concentrations in storm runoff from these basins over a long period of time.  相似文献   

8.
ABSTRACT: Concentrations of 18 hydrophobic chlorinated organic compounds in streambed sediments from 100 sites throughout New Jersey were examined to determine (1) which compounds were detected most frequently, (2) whether detection frequencies differed among selected drainage basins, and (3) whether concentrations differed significantly among selected drainage basins. Twelve drainage basins across New Jersey that contain a range of land-use patterns and population densities were selected to represent various types and degrees of development. To ensure an adequate number of samples for statistical comparison among drainage basins, the 12 selected basins were consolidated into seven drainage areas on the basis of similarities in land-use patterns and population densities. Additionally, data for three classes of chlorinated organic compounds in streambed sediments from 255 sites throughout New Jersey were examined to determine whether the presence of these compounds in streambed sediments is related to the type and degree of development within the drainage area of each sampling site. Chlorinated organic compounds detected most frequently within the seven representative drainage areas were DDT, DDE, DDD, chlordane, dieldrin, and PCBs. DDT, DDE, and DDD, which were the most widely distributed organic compounds, were detected in about 60 to 100 percent of the samples from all drainage areas but one (where the detection rate for these compounds was about 20 to 40 percent). Chiordane and dieldrin were detected in about 80 to 100 percent of samples from highly urbanized and populated drainage areas; detection frequencies for these compounds tended to be smaller in less developed and populated areas. PCBs were detected in about 40 to 85 percent of samples from all drainage areas; detection frequencies were highest in the most heavily developed and populated areas. Analysis of variance on rank-transformed organic compound concentrations normalized to sediment organic carbon content was used to evaluate differences in concentrations among the seven representative drainage areas. Chlordane and PCBs were the chlorinated organic compounds with the most highly elevated concentrations in streambed sediments across the State. Median normalized concentrations of all six of the most frequently detected chlorinated organic compounds were highest in the most heavily urbanized and populated drainage area and lowest in the less populated, predominantly agricultural or forested areas. Concentrations of DDT and DDE, however, did not differ significantly among most of the drainage areas. Concentrations of DDD, chlordane, dieldrin, and PCBs differed significantly among drainage areas. The highest median normalized concentrations were found in samples from the most heavily urbanized and populated areas, and the lowest were in samples from the least developed, most heavily forested area. Logistic regression was used to examine relations between the presence of hydrophobic chlorinated organic compounds in streambed sediments at specified concentrations and variables that characterize the type and degree of development within the drainage areas of 255 sites across New Jersey. The explanatory variables found most useful for predicting the presence of chlorinated organic compounds in streambed sediments include total population and amounts (in square kilometers) of various land-use categories. Logistic regression equations were developed to identify significant relations between population and amounts of specific land-use categories within drainage areas and the probability of detecting chlorinated organic contaminants in streambed sediments. These relations can be used to assist in the identification of geographic regions of primary concern for contamination of bed sediments by chlorinated organic compounds across the State.  相似文献   

9.
ABSTRACT: A modeling framework was developed to determine phosphorus loadings to Lake Okeechobee from watersheds located north of the lake. This framework consists of the land-based model CREAMS-WT, the in-stream transport model QUAL2E, and an interface procedure to format the land-based model output for use by the in-stream model. QUAL2E hydraulics and water quality routines were modified to account for flow routing and phosphorus retention in both wetlands and stream channels. Phosphorus loadings obtained from previous applications of CREAMS-WT were used by QUAL2E, and calibration and verification showed that QUAL2E accurately simulated seasonal and annual phosphorus loadings from a watershed. Sensitivity and uncertainty analyses indicated that the accuracy of monthly loadings can be improved by using better estimates of in-stream phosphorus decay rates, ground water phosphorus concentrations, and runoff phosphorus concentrations as input to QUAL2E.  相似文献   

10.
ABSTRACT: A 2.2-hectare potato (Solanum tuberosum L. cv Chieftain) field at Saint Leonard d'Aston, Quebec (lat. 72° 24′ 30″ long. 46° 5′ 30″) was instrumented to measure tile drain flow over two growing seasons, 1989 and 1990. The soil was a Sainte Jude sandy loam. Soil properties and nitrate concentrations in the drain flow were measured. The CREAMS (Chemicals, Runoff and rosion from agricultural Management systems) computer simulation model was validated for the study site. CREAMS underpredicted event percolation depths. However, total monthly percolation depths were close to observed values. CREAMS overpredicted event nitrate concentrations leached to tile drainage. There was a poor match between predicted and observed event nitrate concentrations in drain flow (coefficient of predictability, CPA= 104.95). Based on a sensitivity analysis, input parameters, representative of local conditions, were determined for the CREAMS hydrology and nutrient submodels.  相似文献   

11.
ABSTRACT: Median concentrations and instantaneous yields of alachlor, metolachlor, atrazine, cyanazine, and simazine were generally highest at sites in the Lower Susquehanna River Basin and in agricultural subbasins. Instantaneous herbicide yields are related to land use, hydrogeologic setting, streamflow yield, and agricultural row cropping practices. The significance of these relations may be affected by the interdependence of the factors. The percentage of basin area planted in corn is the most influential factor in the prediction of herbicide yield. Instantaneous yields of all five herbicides measured in June 1994 related poorly to averaged 1990–94 herbicide use. Annually averaged herbicide-use data are too general to use as a predictor for short-term herbicide yields. An evaluation of factors affecting herbicide yields could be refined with more-current land use and land cover information and a more accurate estimate of the percentage of basin area planted in corn. Factors related to herbicide yields can be used to predict herbicide yields in other basins within the Chesapeake Bay watershed and to develop an estimate of herbicide loads to Chesapeake Bay.  相似文献   

12.
Effective watershed management requires an accurate assessment of the pollutant loads from the associated point and nonpoint sources. The importance of wet weather flow (WWF) pollutant loads is well known, but in semi‐arid regions where urbanization is significant the pollutant load in dry weather flow (DWF) may also be important. This research compares the relative contributions of potential contaminants discharged in DWF and WWF from the Ballona Creek Watershed in Los Angeles, California. Models to predict DWF and WWF loads of total suspended solids, biochemical oxygen demand, nitrate‐nitrogen, nitrite‐nitrogen, ammonia‐nitrogen, total Kjeldahl nitrogen, and total phosphorus from the Ballona Creek Watershed for six water years dating from 1991 to 1996 were developed. The contaminants studied were selected based on data availability and their potential importance in the degradation of Ballona Creek and Santa Monica Bay beneficial uses. Wet weather flow was found to contribute approximately 75 percent to 90 percent of the total annual flow volume discharged by the Ballona Creek Watershed. Pollutant loads are also predominantly due to WWF, but during the dry season, DWF is a more significant contributor. Wet weather flow accounts for 67 to 98 percent of the annual load of the constituents studied. During the dry season, however, the portion attributable to DWF increases to greater than 40 percent for all constituents except biochemical oxygen demand and total suspended solids. When individual catchments within the watershed are considered, the DWF pollutant load from the largest catchment is similar to the WWF pollutant load in two other major catchments. This research indicates WWF is the most significant source of nonpoint source pollution load on an annual basis, but management of the effects of the nonpoint source pollutant load should consider the seasonal importance of DWF.  相似文献   

13.
ABSTRACT: Drawing an analogy between the popular Soil Conservation Service curve number (SCS‐CN) method based infiltration and metal sorption processes, a new partitioning curve number (PCN) approach is suggested for partitioning of heavy metals into dissolved and particulate bound forms in urban snowmelt, rainfall/runoff, and river flow environments. The parameters, the potential maximum desorption, ψ, and the PCN analogous to the SCS‐CN parameters S and CN, respectively, are introduced. Under the condition of snowmelt, PCN (or ψ) is found to generally rely on temperature, relative humidity, pH, and chloride content; during a rainstorm, ψ is found to depend on the alkalinity and the pH of the rainwater; and in the river flow situation, PCN is found to generally depend on the temperature, pH, and chloride content. The advantage of using PCN instead of the widely used partitioning parameter, Kd, is found to lie in the PCN's efficacy to distinguish the adsorption (or sorption) behavior of metals in the above snowmelt, rainfall/runoff, and river flow situations, analogous to the hydrological behavior of watersheds.  相似文献   

14.
ABSTRACT: Land use and surface water data for nitrogen and pesticides (1995 to 1997) are reported for the Walnut Creek Watershed Monitoring Project, Jasper County Iowa. The Walnut Creek project was established in 1995 as a nonpoint source monitoring program in relation to watershed habitat restoration and agricultural management changes implemented at the Neal Smith National Wildlife Refuge by the U.S. Fish and Wildlife Service. The monitoring project utilizes a paired‐watershed approach (Walnut and Squaw creeks) as well as upstream/downstream comparisons on Walnut for analysis and tracking of trends. From 1992 to 1997, 13.4 percent of the watershed was converted from row crop to native prairie in the Walnut Creek watershed. Including another 6 percent of watershed farmed on a cash‐rent basis, land use changes have been implemented on 19.4 percent of the watershed by the USFWS. Nitrogen and pesticide applications were reduced an estimated 18 percent and 28 percent in the watershed from land use changes. Atrazine was detected most often in surface water with frequencies of detection ranging from 76–86 percent. No significant differences were noted in atrazine concentrations between Walnut and Squaw Creek. Nitrate‐N concentrations measured in both watersheds were similar; both basins showed a similar pattern of detection and an overall reduction in nitrate‐N concentrations from upstream to downstream monitoring sites. Water quality improvements are suggested by nitrate‐N and chloride ratios less than one in the Walnut Creek watershed and low nitrate‐N concentrations measured in the subbasin of Walnut Creek containing the greatest amount of land use changes. Atrazine and nitrate‐N concentrations from the lower portion of the Walnut Creek watershed (including the prairie restoration area) may be decreasing in relation to the upstream untreated component of the watershed. The frequencies of pesticide detections and mean nitrate‐N concentrations appear related to the percentage of row crop in the basins and subbasins. Although some results are encouraging, definitive water quality improvements have not been observed during the first three years of monitoring. Possible reasons include: (1) more time is needed to adequately detect changes; (2) the size of the watershed is too large to detect improvements; (3) land use changes are not located in the area of the watershed where they would have greatest effect; or (4) water quality improvements have occurred but have been missed by the project monitoring design. Longer‐term monitoring will allow better evaluation of the impact of restoration activities on water quality.  相似文献   

15.
ABSTRACT: Although the curve number method of the Natural Resources Conservation Service has been used as the foundation of the hydrology algorithms in many nonpoint source water quality models, there are significant problematic issues with the way it has been implemented and interpreted that are not generally recognized. This usage is based on misconceptions about the meaning of the runoff value that the method computes, which is a likely fundamental cause of uncertainty in subsequent erosion and pollutant loading predictions dependent on this value. As a result, there are some major limitations on the conclusions and decisions about the effects of management practices on water quality that can be supported with current nonpoint source water quality models. They also cannot supply the detailed quantitative and spatial information needed to address emerging issues. A key prerequisite for improving model predictions is to improve the hydrologic algorithms contained within them. The use of the curve number method is still appropriate for flood hydrograph engineering applications, but more physically based algorithms that simulate all streamflow generating processes are needed for nonpoint source water quality modeling. Spatially distributed hydrologic modeling has tremendous potential in achieving this goal.  相似文献   

16.
ABSTRACT: CREAMS was applied to a field-sized watershed planted to cotton in the Limestone Valley region of northern Alabama. The field was cultivated for three years with conventional tillage (CvT) followed by three years of conservation tillage (CsT). CREAMS is composed of three components: hydrology, erosion, and chemistry. Surface runoff and losses of sediment, N and P were simulated and results were compared with the observed data from the watershed. Curve numbers recommended in the CREAMS user's guide were not adequate for the watershed conditions. The hydrology submodel improved runoff simulation from CvT and CsT when field-data based curve numbers were used. The erosion submodel demonstrated that CsT reduced sediment loss more than CvT, even though CsT had higher runoff than CvT. The nutrient submodel based on the simulated runoff and sediment underpredicted N loss for both CvT and CsT. This submodel, however, accurately predicted P loss for CvT, but underpredicted for CsT (50 percent lower than the observed). The results of CREAMS simulation generally matched the observed order of magnitude for higher runoff, lower sediment, and higher N and P losses from CsT than from CvT.  相似文献   

17.
ABSTRACT: A Geographic Information System (GIS) based non‐point source runoff model is developed for the Las Vegas Valley, Nevada, to estimate the nutrient loads during the years 2000 and 2001. The estimated nonpoint source loads are compared with current wastewater treatment facilities loads to determine the non‐point source contribution of total phosphorus (TP), total nitrogen (TN), and total suspended solids (TSS) on a monthly and annual time scale. An innovative calibration procedure is used to estimate the pollutant concentrations for different land uses based on available water quality data at the outlet. Results indicate that the pollutant concentrations are higher for the Las Vegas Valley than previous published values for semi‐arid and arid regions. The total TP and TN loads from nonpoint sources are approximately 15 percent and 4 percent, respectively, of the total load to the receiving water body, Lake Mead. The TP loads during wet periods approach the permitted loads from the wastewater treatment plants that discharge into Las Vegas Wash. In addition, the GIS model is used to track pollutant loads in the stream channels for one of the subwatersheds. This is useful for planning the location of Best Management Practices to control nonpoint pollutant loads.  相似文献   

18.
ABSTRACT: Inherent site factors can generate substantial variation in the ground water nitrate removal capacity of riparian zones. This paper examines research in the glaciated Northeast to relate variability in ground water nitrate removal to site attributes depicted in readily available spatial databases, such as SSUIRGO. Linking site‐specific studies of riparian ground water nitrate removal to spatial data can help target high‐value riparian locations for restoration or protection and improve the modeling of watershed nitrogen flux. Site attributes, such as hydric soil status (soil wetness) and geomorphology, affect the interaction of nitrate‐enriched ground water with portions of the soil ecosystem possessing elevated biogeochemical transformation rates (i.e., biologically active zones). At our riparian sites, high ground water nitrate‐N removal rates were restricted to hydric soils. Geomorphology provided insights into ground water flowpaths. Riparian sites located on outwash and organic/alluvial deposits have high potential for nitrate‐enriched ground water to interact with biologically active zones. In till deposits, ground water nitrate removal capacity may be limited by the high occurrence of surface seeps that markedly reduce the time available for biological transformations to occur within the riparian zone. To fully realize the value of riparian zones for nitrate retention, landscape controls of riparian nitrate removal in different climatic and physiographic regions must be determined and translated into available spatial databases.  相似文献   

19.
ABSTRACT: The performance of two popular watershed scale simulation models — HSPF and SWAT — were evaluated for simulating the hydrology of the 5,568 km2 Iroquois River watershed in Illinois and Indiana. This large, tile drained agricultural watershed provides distinctly different conditions for model comparison in contrast to previous studies. Both models were calibrated for a nine‐year period (1987 through 1995) and verified using an independent 15‐year period (1972 through 1986) by comparing simulated and observed daily, monthly, and annual streamflow. The characteristics of simulated flows from both models are mostly similar to each other and to observed flows, particularly for the calibration results. SWAT predicts flows slightly better than HSPF for the verification period, with the primary advantage being better simulation of low flows. A noticeable difference in the models' hydrologic simulation relates to the estimation of potential evapotranspiration (PET). Comparatively low PET values provided as input to HSPF from the BASINS 3.0 database may be a factor in HSPF's overestimation of low flows. Another factor affecting baseflow simulation is the presence of tile drains in the watershed. HSPF parameters can be adjusted to indirectly account for the faster subsurface flow associated with tile drains, but there is no specific tile drainage component in HSPF as there is in SWAT. Continued comparative studies such as this, under a variety of hydrologic conditions and watershed scales, provide needed guidance to potential users in model selection and application.  相似文献   

20.
ABSTRACT: Twenty‐three stream sites representing a range of forested, agricultural, and urban land uses were sampled in the South Platte River Basin of Colorado from July through September 2002 to characterize water quality during drought conditions. With a few exceptions, dissolved ammonia, Kjeldahl nitrogen, total phosphorus, and dissolved orthophosphate concentrations were similar to seasonal historical levels in all land use areas during the drought. At some agricultural sites, decreased dilution of irrigation return flow may have contributed to higher concentrations of some nutrient species, increased primary productivity, and higher dissolved oxygen concentrations. At some urban sites, decreased dilution of base flow and wastewater treatment plant effluent may have contributed to higher dissolved nitrite‐plus‐nitrate concentrations, increased primary productivity, and higher dissolved oxygen concentrations. Total pesticide concentrations in urban and agricultural areas were not consistently higher or lower during the drought. At most forested sites, decreased dilution of ground water‐derived calcium bicarbonate type base flow likely led to elevated pH and specific‐conductance values. Water temperatures at many of the forested sites also were higher, contributing to lower dissolved oxygen concentrations during the drought.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号