首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
杨吉娜  刘丹阳  周婷 《色谱》2020,38(1):74-85
脂质作为细胞膜和亚细胞膜的主要结构成分,在能量来源、细胞信号传导等多种生物学过程中发挥着重要作用。近年来,脂质分析受到越来越多的关注,其中色谱-质谱联用技术在脂质分析中占据主导地位。由于样品基质复杂,样品前处理有富集痕量物质和减少基质干扰的作用,成为脂质分析中的一个关键步骤。该文综述了近年来基于色谱-质谱联用技术的脂质分析中样品前处理技术的研究进展和应用,对各种样品前处理技术进行了阐述和总结。基于液相的萃取方法有液-液萃取和单一有机溶剂萃取。基于固相的萃取方法包括固相萃取和固相微萃取。场辅助萃取方法包括超临界流体萃取、加压流体萃取、微波辅助萃取和超声辅助萃取。此外,还介绍了在线联用样品前处理方法和用于活体分析的样品前处理方法。最后,对基于色谱-质谱联用的脂质分析样品前处理技术存在的问题及发展趋势进行了探讨。样品前处理技术的发展将提高脂质分析的灵敏度、选择性和分析速度。  相似文献   

2.
《色谱》2020,(1)
脂质作为细胞膜和亚细胞膜的主要结构成分,在能量来源、细胞信号传导等多种生物学过程中发挥着重要作用。近年来,脂质分析受到越来越多的关注,其中色谱-质谱联用技术在脂质分析中占据主导地位。由于样品基质复杂,样品前处理有富集痕量物质和减少基质干扰的作用,成为脂质分析中的一个关键步骤。该文综述了近年来基于色谱-质谱联用技术的脂质分析中样品前处理技术的研究进展和应用,对各种样品前处理技术进行了阐述和总结。基于液相的萃取方法有液-液萃取和单一有机溶剂萃取。基于固相的萃取方法包括固相萃取和固相微萃取。场辅助萃取方法包括超临界流体萃取、加压流体萃取、微波辅助萃取和超声辅助萃取。此外,还介绍了在线联用样品前处理方法和用于活体分析的样品前处理方法。最后,对基于色谱-质谱联用的脂质分析样品前处理技术存在的问题及发展趋势进行了探讨。样品前处理技术的发展将提高脂质分析的灵敏度、选择性和分析速度。  相似文献   

3.
分散液液微萃取技术的研究进展   总被引:1,自引:0,他引:1  
分散液液微萃取是一种基于传统液液萃取的新型样品前处理技术。该文以分散液液微萃取技术中萃取剂的筛选为出发点,综述了低密度萃取剂、辅助萃取剂、反萃取剂和离子液体等低毒性萃取剂在该技术中的应用,以及应用自制装置、溶剂去乳化、悬浮萃取剂固化,辅助萃取,反萃取和离子液体-分散液液微萃取等萃取模式;并简要评述了该技术与液液萃取、固相萃取、固相微萃取、分散固相萃取、基质固相分散萃取、超临界流体萃取、超声辅助萃取等其他样品前处理技术的联用特性。  相似文献   

4.
样品前处理技术在气相色谱分析中的应用进展   总被引:1,自引:0,他引:1  
气相色谱法是当前应用最广泛的分析技术之一。使用气相色谱对复杂基体进行分析时的样品前处理步骤往往繁琐耗时,易引起误差,已成为制约分析效率和准确度提升的关键环节。本文综述了2009-2013年几种主要的样品前处理技术,包括吹扫捕集、固相萃取、固相微萃取、液相微萃取技术以及微波辅助萃取、超声波辅助萃取等场辅助萃取技术在气相色谱分析中的应用研究进展。  相似文献   

5.
兽药残留分析中样品前处理技术研究进展   总被引:7,自引:0,他引:7  
样品前处理是兽药残留分析中的关键步骤,直接影响检测的结果.近年来,出现了一些新的样品前处理技术,如固相萃取、基质固相分散萃取、固相微萃取、搅拌棒吸附萃取、膜萃取、液相微萃取、超临界流体萃取、加速溶剂萃取、分子印迹、微波辅助萃取.这些技术能够有效地减少分析过程中由样品前处理过程带来的误差,具有前处理快速、简便的优点,同时可与分析仪器联用,实现分析的自动化.本文对这些新技术的基本原理、特点及在兽药残留分析中的应用进行了综述,并对样品前处理的前景进行了展望.  相似文献   

6.
农药残留分析的样品来源多样、基体复杂,而传统的离线样品前处理中,萃取、转移、净化、浓缩等步骤分步进行,繁琐费时、样品损失较大、精密度和重现性差,因此,发展样品前处理-色谱在线分析技术可望解决这些问题。本文综述了近年来固相萃取、固相微萃取、基质固相分散萃取、膜萃取、微波辅助萃取、加速溶剂萃取和超临界萃取等样品前处理-色谱在线分析农药残留的研究进展,并展望了其应用前景和发展方向。引用文献54篇。  相似文献   

7.
申书昌  王文波  安红  张维冰 《分析化学》2004,32(8):1121-1121
固相微萃取(SPME)是90年代兴起的新型无溶剂样品前处理技术,基本的固相微萃取是通过石英纤维头表面涂渍的高分子层对样品中的有机分子进行萃取和预富集,然后进行色谱分析,使预处理过程大为简化,提高了分析速度及灵敏度。目前,商品SPME.GC联用装置是由美国Supclco公司生产的涂有PDMS、PA、PEG20M3种单一吸附质及4种部分交联的复合固相材料。涂层极性决定了其应用范围。  相似文献   

8.
本文结合分子印迹固相微萃取与中空纤维液相微萃取技术的优点,发展了分子印迹固-液微萃取(MIP-SLME)样品前处理联用技术.设计联用萃取技术装置,以自制的特丁津MIP-SPME涂层研究MIP-SLME技术的萃取条件和萃取性能,建立特丁津MIP-SLME/HPLC联用分析方法,实现复杂生物、环境样品中痕量三嗪类除草剂多残留同时分析.  相似文献   

9.
样品前处理是样品分析过程的关键环节。目前各种微波、光、压力、超声波等场作用因能强化溶质传递、加速样品分离而被广泛地运用到样品前处理中。其中,电场辅助样品前处理技术能提高微痕量分析物萃取效率和选择性,已成为场辅助样品前处理技术的研究热点,并已在食品、环境、医药、生物等领域得到应用。该文综述了包括电场辅助膜萃取技术、电场辅助液相(微)萃取技术、电场辅助固相(微)萃取技术在内的电场辅助样品前处理技术的研究进展,并展望了其发展趋势。  相似文献   

10.
综述了近十年来生物检材中可卡因及其代谢物分析常用的样品前处理技术和检测方法,比较了液-液萃取、固相萃取、固相微萃取等提取方法的可行性和局限性及气相色谱、气相色谱-质谱联用、液相色谱-质谱联用等检测方法的应用进展。  相似文献   

11.
Advances in the area of sample preparation are significant and have been growing significantly in recent years. This initial step of the analysis is essential and must be carried out properly, consisting of a complicated procedure with multiple stages. Consequently, it corresponds to a potential source of errors and will determine, at the end of the process, either a satisfactory result or a fail. One of the advances in this field includes the miniaturization of extraction techniques based on the conventional sample preparation procedures such as liquid‐liquid extraction and solid‐phase extraction. These modern techniques have gained prominence in the face of traditional methods since they minimize the consumption of organic solvents and the sample volume. As another feature, it is possible to reuse the sorbents, and its coupling to chromatographic systems might be automated. The review will emphasize the main techniques based on liquid‐phase microextraction, as well as those based upon the use of sorbents. The first group includes currently popular techniques such as single drop microextraction, hollow fiber liquid‐phase microextraction, and dispersive liquid‐liquid microextraction. In the second group, solid‐phase microextraction techniques such as in‐tube solid‐phase microextraction, stir bar sorptive extraction, dispersive solid‐phase extraction, dispersive micro solid‐phase microextraction, and microextraction by packed sorbent are highlighted. These approaches, in common, aim the determination of analytes at low concentrations in complex matrices. This article describes some characteristics, recent advances, and trends on miniaturized sample preparation techniques, as well as their current applications in food, environmental, and bioanalysis fields.  相似文献   

12.
分子印迹聚合物具有抗恶劣环境、选择性高、稳定性好等特点,广泛应用于复杂样品的前处理。采用结构类似物作为替代模板分子,可以解决分子印迹聚合物制备时目标物溶解性差的问题,替代模板分子印迹聚合物不仅对目标分析物具有选择性识别能力,还可以避免模板泄露对痕量分析造成的影响。本文综述了替代模板分子印迹技术在样品前处理中的应用进展,包括替代模板分子印迹技术在固相萃取、固相微萃取、色谱固定相、基质固相分散萃取中的应用,最后对替代模板分子印迹技术在未来的样品前处理中的研究进行了展望。  相似文献   

13.
The determination of trace residues and contaminants in complex matrices, such as food, often requires extensive sample extraction and preparation prior to instrumental analysis. Sample preparation is often the bottleneck in analysis and there is a need to minimise the number of steps to reduce both time and sources of error. There is also a move towards more environmentally friendly techniques, which use less solvent and smaller sample sizes. Smaller sample size becomes important when dealing with real life problems, such as consumer complaints and alleged chemical contamination. Optimal sample preparation can reduce analysis time, sources of error, enhance sensitivity and enable unequivocal identification, confirmation and quantification. This review considers all aspects of sample preparation, covering general extraction techniques, such as Soxhlet and pressurised liquid extraction, microextraction techniques such as liquid phase microextraction (LPME) and more selective techniques, such as solid phase extraction (SPE), solid phase microextraction (SPME) and stir bar sorptive extraction (SBSE). The applicability of each technique in food analysis, particularly for the determination of trace organic contaminants in foods is discussed.  相似文献   

14.
The application of graphene‐based sorbents in sample preparation techniques has increased significantly since 2011. These materials have good physicochemical properties to be used as sorbent and have shown excellent results in different sample preparation techniques. Graphene and its precursor graphene oxide have been considered to be good candidates to improve the extraction and concentration of different classes of target compounds (e.g., parabens, polycyclic aromatic hydrocarbon, pyrethroids, triazines, and so on) present in complex matrices. Its applications have been employed during the analysis of different matrices (e.g., environmental, biological and food). In this review, we highlight the most important characteristics of graphene‐based material, their properties, synthesis routes, and the most important applications in both off‐line and on‐line sample preparation techniques. The discussion of the off‐line approaches includes methods derived from conventional solid‐phase extraction focusing on the miniaturized magnetic and dispersive modes. The modes of microextraction techniques called stir bar sorptive extraction, solid phase microextraction, and microextraction by packed sorbent are discussed. The on‐line approaches focus on the use of graphene‐based material mainly in on‐line solid phase extraction, its variation called in‐tube solid‐phase microextraction, and on‐line microdialysis systems.  相似文献   

15.
Sample preparation is a critical step in forensic analytical toxicology. Different extraction techniques are employed with the goals of removing interferences from the biological samples, such as blood, tissues and hair, reducing matrix effects and concentrating the target analytes, among others. With the objective of developing faster and more ecological procedures, microextraction techniques have been expanding their applications in the recent years. This article reviews various microextraction methods, which include solid‐based microextraction, such as solid‐phase microextraction, microextraction by packed sorbent and stir‐bar sorptive extraction, and liquid‐based microextraction, such as single drop/hollow fiber‐based liquid‐phase microextraction and dispersive liquid–liquid microextraction, as well as their applications to forensic toxicology analysis. The development trend in future microextraction sample preparation is discussed.  相似文献   

16.
Silicones have innumerable applications in many areas of life. Polydimethylsiloxane (PDMS), which belongs to the class of silicones, has been extensively used in the field of analytical chemistry owing to its favourable physicochemical properties. The use of PDMS in analytical chemistry gained importance with its application as a stationary phase in gas chromatographic separations. Since then it has been used in many sample preparation techniques such as solid phase microextraction (SPME), stir bar sorptive extraction (SBSE), thin-film extraction, permeation passive sampling, etc. Further, it is gaining importance in the manufacturing of lab-on-a-chip devices, which have revolutionized bio-analysis. Applications of devices containing PDMS and used in the field of analytical chemistry are reviewed in this paper.  相似文献   

17.
Ultra high performance liquid chromatography and supercritical fluid chromatography techniques are favored because of their high efficiency and fast analysis speed. Although many sample preparation techniques have been coupled with common liquid chromatography online, the online coupling of sample preparation with the two popular chromatography techniques have gained increasing attention owing to the increasing requirements of efficiency and sensitivity. In this review, we have discussed and summarized the recent advances of the online coupling of sample preparation with ultra high performance liquid chromatography and supercritical fluid chromatography techniques. The main sample preparation techniques that have been coupled with ultra high performance liquid chromatography online are solid‐phase extraction and in‐tube solid‐phase microextraction, while solid‐phase extraction and supercritical fluid extraction are the main techniques that have been coupled with supercritical fluid chromatography online. Especially, the strategies for online coupling of sample preparation with chromatography techniques were summarized. Typical applications and growing trends of the online coupling techniques were also discussed in detail. With the increasing demands of improving the efficiency, throughput, and analytical capability toward complex samples of the analysis methods, online coupling of sample preparation with chromatography techniques will acquire further development.  相似文献   

18.
Green chemistry principles for developing methodologies have gained attention in analytical chemistry in recent decades. A growing number of analytical techniques have been proposed for determination of organic persistent pollutants in environmental and biological samples. In this light, the current review aims to present state-of-the-art sample preparation approaches based on green analytical principles proposed for the determination of polybrominated diphenyl ethers (PBDEs) and metabolites (OH-PBDEs and MeO-PBDEs) in environmental and biological samples. Approaches to lower the solvent consumption and accelerate the extraction, such as pressurized liquid extraction, microwave-assisted extraction, and ultrasound-assisted extraction, are discussed in this review. Special attention is paid to miniaturized sample preparation methodologies and strategies proposed to reduce organic solvent consumption. Additionally, extraction techniques based on alternative solvents (surfactants, supercritical fluids, or ionic liquids) are also commented in this work, even though these are scarcely used for determination of PBDEs. In addition to liquid-based extraction techniques, solid-based analytical techniques are also addressed. The development of greener, faster and simpler sample preparation approaches has increased in recent years (2003–2013). Among green extraction techniques, those based on the liquid phase predominate over those based on the solid phase (71% vs. 29%, respectively). For solid samples, solvent assisted extraction techniques are preferred for leaching of PBDEs, and liquid phase microextraction techniques are mostly used for liquid samples. Likewise, green characteristics of the instrumental analysis used after the extraction and clean-up steps are briefly discussed.  相似文献   

19.
《Electrophoresis》2017,38(24):3059-3078
In the field of analytical chemistry, sample preparation and chromatographic separation are two core procedures. The means by which to improve the sensitivity, selectivity and detection limit of a method have become a topic of great interest. Recently, porous organic frameworks, such as metal‐organic frameworks (MOFs) and covalent organic frameworks (COFs), have been widely used in this research area because of their special features, and different methods have been developed. This review summarizes the applications of MOFs and COFs in sample preparation and chromatographic stationary phases. The MOF‐ or COF‐based solid‐phase extraction (SPE), solid‐phase microextraction (SPME), gas chromatography (GC), high‐performance liquid chromatography (HPLC) and capillary electrochromatography (CEC) methods are described. The excellent properties of MOFs and COFs have resulted in intense interest in exploring their performance and mechanisms for sample preparation and chromatographic separation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号