首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Here we report novel effects of regulators of G protein signaling (RGS) on G protein-regulated ion channels. RGS3 and RGS4 induced a substantial increase in currents through the Gbeta gamma-regulated inwardly rectifying K+ channels, IK(ACh), in the absence of receptor activation. Concomitantly, the amount of current that could be activated by agonist was reduced. Pretreatment with pertussis toxin or a muscarinic receptor antagonist abolished agonist-induced currents but did not modify RGS effects. Cotransfection of cells with a Gbetagamma-binding protein significantly reduced the RGS4-induced basal IK(ACh) currents. The RGS proteins also modified the properties of another Gbeta gamma effector, the N-type Ca2+ channels. These observations strongly suggest that RGS proteins increase the availability of Gbeta gamma in addition to their previously described GTPase-activating function.  相似文献   

2.
BACKGROUND: In the budding yeast Saccharomyces cerevisiae, the pheromones that induce haploid cells of opposite cell types to mate activate the Gbeta and Ggamma subunits of a heterotrimeric G protein. These subunits signal through the PAK kinase Ste20 to activate a mitogen-activated protein (MAP) kinase cascade comprising the MEKK Ste11, the MEK Ste7 and two MAP kinases, Fus3 and Kss1. The pathway requires Ste5, a scaffold protein that tethers the MAP kinase cascade enzymes into a high molecular weight complex. Ste5 is thought to associate with Gbeta in a pheromone-independent manner, but it is not known if this interaction affects signaling. RESULTS: A ste5C180A mutant - which expresses Ste5 disrupted in the LIM domain, a putative metal-binding motif that has been proposed to be essential for Ste5 oligomerization - could not transmit the pheromone signal from Gbeta through Ste20 to Ste11. The Ste5C180A protein was impaired in binding Gbeta, although it could oligomerize, bind Ste11, Ste7 and Fus3, facilitate the basal activation of Ste11, and relay the Ste11 signal to MAP kinases. Ste5 bound to Gbeta in a pheromone-dependent manner and preferentially associated with a phosphorylated form of Gbeta in wild-type and ste20Delta, but not in ste5C180A, strains. CONCLUSIONS: Pheromone induces binding of Gbeta to Ste5 through its LIM domain. This binding is essential for activation of Ste11 and is distinct from the ability of Ste5 to oligomerize or to serve as a scaffold and relay the signal from Ste11 to the MAP kinases. Pheromone also induces Ste5-dependent phosphorylation of Gbeta.  相似文献   

3.
In the present study, we investigated the function and the mechanism of action of RGS3, a member of a family of proteins called regulators of G protein signaling (RGS). Polyclonal antibodies against RGS3 were produced and characterized. An 80-kDa protein was identified as RGS3 by immunoprecipitation and immunoblotting with anti-RGS3 antibodies in a human mesangial cell line (HMC) stably transfected with RGS3 cDNA. Coimmunoprecipitation experiments in RGS3-overexpressing cell lysates revealed that RGS3 bound to aluminum fluoride-activated Galpha11 and to a lesser extent to Galphai3 and that this binding was mediated by the RGS domain of RGS3. A role of RGS3 in postreceptor signaling was demonstrated by decreased calcium responses and mitogen-activated protein (MAP) kinase activity induced by endothelin-1 in HMC stably overexpressing RGS3. Moreover, depletion of endogenous RGS3 by transfection of antisense RGS3 cDNA in NIH 3T3 cells resulted in enhanced MAP kinase activation induced by endothelin-1. The study of intracellular distribution of RGS3 indicated its unique cytosolic localization. Activation of G proteins by AlF4-, NaF, or endothelin-1 resulted in redistribution of RGS3 from cytosol to the plasma membrane as determined by Western blotting of the cytosolic and particulate fractions with RGS3 antiserum as well as by immunofluorescence microscopy. Agonist-induced translocation of RGS3 occurred by a dual mechanism involving both C-terminal (RGS domain) and N-terminal regions of RGS3. Thus, coexpression of RGS3 with a constitutively active mutant of Galpha11 (Galpha11-QL) resulted in the binding of RGS3, but not of its N-terminal fragment, to the membrane fraction and in its interaction with Galpha11-QL in vitro without any stimuli. However, both full-length RGS3 and its N-terminal domain translocated to the plasma membrane upon stimulation of intact cells with endothelin-1 as assayed by immunofluorescence microscopy. The effect of endothelin-1 was also mimicked by calcium ionophore A23187, suggesting the importance of Ca2+ in the mechanism of redistribution of RGS3. These data indicate that RGS3 inhibits G protein-coupled receptor signaling by a complex mechanism involving its translocation to the membrane in addition to its established function as a GTPase-activating protein.  相似文献   

4.
Mitogen-activated protein kinases (MAPKs) are activated by a variety of extracellular stimuli, including agonists for G protein-coupled receptors. Using transient transfection of COS-7 cells, we have studied the stimulation of a hemagglutinin-tagged p44mapk (p44HA-mapk) by receptors coupled to Gs, Gq, and Gi. Agonists that act via all three G proteins stimulated p44HA-mapk activity. A constitutively activated alpha s mutant, forskolin, and a cAMP analog also increased p44HA-mapk activity, indicating that cAMP in COS-7 cells, in contrast to other cell types, activates the MAPK pathway. Similarly, a constitutively activated alpha q mutant, overexpression of phospholipase C-beta 2, and a phorbol ester also stimulated p44HA-mapk, suggesting that Gq-coupled receptors stimulate the MAPK pathway by increasing phosphatidylinositol turnover and probably stimulating protein kinase C. In COS-7 cells, in contrast to Rat-1 cells, mutationally activated alpha i did not stimulate the MAPK pathway. G protein beta and gamma subunits, overexpressed together, did activate p44HA-mapk; this finding suggests that in COS-7 cells Gi-coupled receptors may stimulate the MAPK pathway through beta gamma. These unexpected results in COS-7 cells show that G proteins and second messengers regulate the MAPK pathway differently in different cell types.  相似文献   

5.
The beta and gamma subunits of heterotrimeric guanine nucleotide-binding regulatory proteins (G proteins) form tightly associated complexes. To examine functional differences among the large number of possible combinations of unique beta and gamma subunits, we have synthesized and characterized beta gamma complexes containing gamma 5 and gamma 7, two widely distributed gamma subunits. When either gamma 5 or gamma 7 is expressed concurrently with beta 1 or beta 2 subunits in a baculovirus/Sf9 cell system, all four subunit complexes support pertussis toxin-catalyzed ADP-ribosylation of rGi alpha 1 (where "r" indicates recombinant), indicating formation of functional complexes. Each of the complexes was purified by subunit exchange chromatography, using the G203A mutant of rGi alpha 1 as the immobilized ligand. The purified preparations were compared with other recombinant beta gamma subunits, including beta 1 gamma 1 and beta 1 gamma 2, for their ability to modulate type I and II adenylyl cyclase activities; stimulate phosphoinositide-specific phospholipase C beta; support pertussis toxin-catalyzed ADP-ribosylation of rGi alpha 1 and Go alpha; and inhibit steady-state GTP hydrolysis catalyzed by Gs alpha, Go alpha, and myristoylated rGi alpha 2. The results emphasize the unique properties of beta 1 gamma 1. The properties of the complexes containing gamma 5 or gamma 7 were similar to each other and to those of beta 1 gamma 2.  相似文献   

6.
Cysteine-rich regions of protein kinase C (PKC) are implicated in diacylglycerol-dependent regulation of kinase activity. The second cysteine-rich region (residues 92-173) of PKC gamma was expressed as a fusion protein with glutathione-S-transferase in Escherichia coli and purified to homogeneity by affinity chromatography. This fusion protein displayed high affinity phorbol dibutyrate (PDBu) binding (Kd 23 nM). The phosphatidylserine dependence of PDBu binding was highly cooperative with Hill numbers (near 4.5) similar to those previously reported for PKC gamma (Burns, D. J., and Bell, R. M. (1991) J. Biol. Chem. 266, 18330-18338). The fusion protein specifically bound 4 beta-hydroxy-PDBu but not the 4 alpha-stereoisomer. Furthermore, sn-1,2-dioctanoylglycerol (diC8) stereoselectively competed for PDBu binding. The cysteine-rich region was sufficient for association of the fusion protein to liposome preparations containing phosphatidylserine and phosphatidylcholine. Association was significantly enhanced in a stereospecific manner by the presence of PDBu as well as diC8. These results establish that a single cysteine-rich domain (residues 92-173) of PKC gamma contains regions necessary and sufficient for lipid-dependent stereospecific interactions with PDBu and diC8. Furthermore, the region is sufficient to confer translocation of a fusion protein to liposomes in a PDBu- and diC8-dependent fashion. Thus, a single cysteine-rich region of PKC gamma displays many of the properties characteristic of PKC.  相似文献   

7.
To identify potential RhoA effector proteins, we conducted a two-hybrid screen for cDNAs encoding proteins that interact with a Gal4-RhoA.V14 fusion protein. In addition to the RhoA effector ROCK-I we identified cDNAs encoding Kinectin, mDia2 (a p140 mDia-related protein), and the guanine nucleotide exchange factor, mNET1. ROCK-I, Kinectin, and mDia2 can bind the wild type forms of both RhoA and Cdc42 in a GTP-dependent manner in vitro. Comparison of the ROCK-I and Kinectin sequences revealed a short region of sequence homology that is both required for interaction in the two-hybrid assay and sufficient for weak interaction in vitro. Sequences related to the ROCK-I/Kinectin sequence homology are present in heterotrimeric G protein beta subunits and in the Saccharomyces cerevisiae Skn7 protein. We show that beta2 and Skn7 can interact with mammalian RhoA and Cdc42 and yeast Rho1, both in vivo and in vitro. Functional assays in yeast suggest that the Skn7 ROCK-I/Kinectin homology region is required for its function in vivo.  相似文献   

8.
In this study, we identify new isoforms of the retinal phosducin and investigate the expression of the phosducin family, showing that an isoform, PhLP1, has sequence homology with Phd and Gbeta gamma binding capability, whereas two isoforms (phosducin-like orphan proteins, PhLOPs) share sequence homology with Phd but fail to bind Gbeta gamma. Original identification of PhLP1 and the PhLOPs was from a human retina cDNA library, using a PCR product for library hybridization screening that contained a predicted functional epitope domain. The screen identified Phd and three related, but distinct, recombinants (PhLP1, PhLOP1, and PhLOP2). By RT-PCR, all isoforms are expressed in either retina or forskolin-stimulated Y79 retinoblastoma cells; however, the new isoforms are below the level of detection on Northern blot analysis. The predicted amino acid translation of each homologue revealed major differences, arising from either splice variants or gene duplication of Phd. To test the functional interaction of all phosducin isoforms with Gbeta gamma in vitro, a glutathione S-transferase (GST) fusion protein was developed for each member. Biochemical interaction with purified retinal transducin Gbeta gamma was verified for GST-Phd and demonstrated for GST-PhLP1; however, neither GST-PhLOP1 nor GST-PhLOP2 bound Gbeta gamma. Comparable results were observed when the GST-phosducin fusion proteins selectively sequestered Gbeta gammas from retinal extracts or when functional Gbeta gamma interactions were assessed using surface plasmon resonance technology. Phosducin and its isoforms are widely distributed in body tissues where they may participate in signal transduction pathways. Phd and PhLP1 possess an 11-amino acid conserved epitope domain (TGPKGVINDWR) that controls the high-affinity binding of Gbeta gamma; these isoforms are implicated in the G-protein signaling pathway. The phosducin-like orphan proteins (PhLOPs) fail to bind Gbeta gamma, suggesting that the PhLOP isoforms may participate in still unidentified signaling pathways.  相似文献   

9.
Gradient elution reversed-phase high-performance liquid chromatographic and capillary electrophoretic separations were optimised to separate substance P (SP) and twelve of its fragments. The methods were applied to a study of the in vivo metabolism of substance P in the rat after intrastriatal injection of the peptide (10 nmol). SP and significant amounts of its N-terminal fragments, SP(1-7) and SP(1-4), were detected but no major C-terminal fragments could be identified. At the concentration studied, the metabolism of SP was shown to follow zero order elimination kinetics with a rate of decay of 0.2 nmol/min. As we have shown that SP(1-4) and SP(1-7) can be produced in vivo in the striatum in relatively large amounts, it is conceivable that these fragments contribute to the overall pharmacological pattern of activity of the parent peptide.  相似文献   

10.
The coupling of receptors to heterotrimeric G proteins is determined by interactions between the receptor and the G protein alpha subunits and by the composition of the betagamma dimers. To determine the role of the gamma subunit prenyl modification in this interaction, the CaaX motifs in the gamma1 and gamma2 subunits were altered to direct modification with different prenyl groups, recombinant betagamma dimers expressed in the baculovirus/Sf9 insect cell system, and the dimers purified. The activity of the betagamma dimers was compared in two assays: formation of the high affinity agonist binding conformation of the A1 adenosine receptor and receptor-catalyzed exchange of GDP for GTP on the alpha subunit. The beta1gamma1 dimer (modified with farnesyl) was significantly less effective than beta1gamma2 (modified with geranylgeranyl) in either assay. The beta1gamma1-S74L dimer (modified with geranylgeranyl) was nearly as effective as beta1gamma2 in either assay. The beta1gamma2-L71S dimer (modified with farnesyl) was significantly less active than beta1gamma2. Using 125I-labeled betagamma subunits, it was determined that native and altered betagamma dimers reconstituted equally well into Sf9 membranes containing A1 adenosine receptors. These data suggest that the prenyl group on the gamma subunit is an important determinant of the interaction between receptors and G protein gamma subunits.  相似文献   

11.
The heterotrimeric G proteins are often regarded functionally as a heterodimer, consisting of a guanine nucleotide-binding alpha subunit and a beta gamma subunit complex. Since the tightly associated beta gamma subunit complex can be separated only under denaturing conditions, studies aimed at determining the individual contributions of the beta and gamma subunits in terms of binding to the various alpha subunits, interacting with receptors, and regulating effectors, have not been possible. To circumvent this problem, we have used baculovirus-infected cells to direct the individual expression of the beta 1 and gamma 2 subunits. Application of extracts from baculovirus-infected cells to an alpha subunit of G protein (G(o) alpha)-affinity matrix resulted in the selective retention and AMF-specific elution of the expressed gamma 2 subunit, but not the expressed beta 1 subunit. Overall, these and other data provide the first evidence of a direct association between the gamma and alpha subunits, which is dependent on prenylation of gamma. The apparent direct association between the gamma and alpha subunits was further probed by limited trypsin proteolysis. Upon addition of trypsin, the G(o) alpha subunit was rapidly cleaved to a 24-kDa fragment. However, in the presence of the purified gamma 2 subunit, trypsin cleavage of the G(o) alpha subunit was completely prevented. This demonstration of a direct association between the gamma and alpha subunits is particularly intriguing in light of the increasingly large number of known alpha, beta, and gamma subunits, which raises important questions regarding the assembly of these subunits into functionally distinct G proteins. Thus, a direct association between the gamma and alpha subunits, which exhibit the greatest structural diversity, may provide the basis for the selective assembly of these subunits into G proteins with functional diversity.  相似文献   

12.
The G protein beta5 subunit differs substantially in amino acid sequence from the other known beta subunits suggesting that beta gamma dimers containing this protein may play specialized roles in cell signaling. To examine the functional properties of the beta5 subunit, recombinant beta5 gamma2 dimers were purified from baculovirus-infected Sf9 insect cells using a strategy based on two affinity tags (hexahistidine and FLAG) engineered into the N terminus of the gamma2 subunit (gamma2HF). The function of the pure beta5 gamma2HF dimers was examined in three assays: activation of pure phospholipase C-beta in lipid vesicles; activation of recombinant, type II adenylyl cyclase expressed in Sf9 cell membranes; and coupling of alpha subunits to the endothelin B (ETB) and M1 muscarinic receptors. In each case, the efficacy of the beta5 gamma2HF dimer was compared with that of the beta1 gamma2HF dimer, which has demonstrated activity in these assays. The beta5 gamma2HF dimer activated phospholipase C-beta with a potency and efficacy similar to that of beta1 gamma2 or beta1 gamma2HF; however, it was markedly less effective than the beta1 gamma2HF or beta1 gamma2 dimer in its ability to activate type II adenylyl cyclase (EC50 of approximately 700 nM versus 25 nM). Both the beta5 gamma2HF and the beta1 gamma2HF dimers supported coupling of M1 muscarinic receptors to the Gq alpha subunit. The ETB receptor coupled effectively to both the Gi and Gq alpha subunits in the presence of the beta1 gamma2HF dimer. In contrast, the beta5 gamma2HF dimer only supported coupling of the Gq alpha subunits to the ETB receptor and did not support coupling of the Gi alpha subunit. These results suggest that the beta5 gamma2HF dimer binds selectively to Gq alpha subunits and does not activate the same set of effectors as dimers containing the beta1 subunit. Overall, the data support a specialized role for the beta5 subunit in cell signaling.  相似文献   

13.
A library of core mutants of the GB1 domain of streptococcal protein G was created, and the structure and stability of selected members was assessed by 1H-15N heteronuclear correlation NMR spectroscopy and fluorescence. All mutants comprised changes in beta-sheet residues, with sidechains at positions 5 (Leu), 7 (Leu), 52 (Phe) and 54 (Val) forming the beta-sheet side of the sheet-helix core interface. A solvent exposed position Ile-6 was chosen as a control. Randomization of bases at codon positions 1 and 3 with thymine at position 2 introduces five possible hydrophobic amino acids, namely Leu, Val, Ile, Phe, and Met. The distribution of encoded amino acids at all five positions is approximately as expected theoretically and indicates that no major bias was introduced towards particular residues. The overall structural integrity of several mutants, as assessed by NMR, ranges from very close to wild type to fully unfolded. Interestingly, the stability of the mutants is not strictly correlated with the number of changes or residue volume.  相似文献   

14.
The activity of mammalian phosphoinositide-specific phospholipase C beta 2 (PLC-beta 2) is regulated by the alpha q family of G proteins and by beta gamma subunits. We measured the affinity between the laterally associating PLC-beta 2 and G beta gamma on membrane surfaces by fluorescence resonance energy transfer. Using a simple model, we translated this apparent affinity to a bulk or three-dimensional equilibrium constant (Kd) and obtained a value of 3.2 microM. We confirmed this Kd by separately measuring the on and off (kf and kr) rate constants. The kf was slower than a diffusion-limited value, suggesting that conformational changes occur when the two proteins interact. The off rate shows that the PLC-beta 2.G beta gamma complexes are long-lived ( approximately 123 s) and that activation of PLC-beta 2 by G beta gamma would be sustained without a deactivating factor. The addition of alpha i1(GDP) subunits failed to physically dissociate the complex as determined by fluorescence. However, enzyme activity studies performed under similar conditions show that the addition of G alpha i1(GDP) results in reversal of PLC-beta 2 activation by G beta gamma during the time of the assay (30 s). From these results, we propose that G alpha(GDP) subunits can bind to the PLC-beta 2.G beta gamma complex to allow for rapid deactivation without complex dissociation. In support of this model, we show by fluorescence that G alpha i1(GDP).G beta gamma.PLC-beta 2 can form.  相似文献   

15.
Pleckstrin is a 40 kDa substrate for protein kinase C found in platelets and neutrophils. Based upon its sequence, pleckstrin contains two of the recently-described PH domains that are thought to be binding motifs for phosphatidyl 4,5-bisphosphate (PIP2) and/or G protein beta gamma heterodimers (G beta gamma). In the present studies we have examined the interaction between pleckstrin and G beta gamma by incubating pleckstrin fusion proteins with lysates from human platelets. In this analysis, both the N-terminal and C-terminal PH domains from pleckstrin bound G beta gamma in vitro, as did peptides containing as little as the first 30 residues of the C-terminal pleckstrin PH domain. Introduction of a point mutation into this region, analogous to the mutation in the Btk PH domain that causes X-linked immunodeficiency disease (XID) in mice, dramatically disrupted this interaction. We propose that pleckstrin may interact with G beta gamma, and that one potential site for this interaction involves the first 30 residues of pleckstrin's C-terminal PH domain.  相似文献   

16.
Replication protein A (RPA) is a heterotrimeric single-stranded DNA-binding protein in eukaryotic cells. The DNA binding activity of human RPA has been previously localized to the N-terminal 441 amino acids of the 70-kDa subunit, RPA70. We have used a combination of limited proteolysis and mutational analysis to define the smallest soluble fragment of human RPA70 that retains complete DNA binding activity. This fragment comprises residues 181-422. RPA181-422 bound DNA with the same affinity as the 1-441 fragment and had a DNA binding site of 8 nucleotides or less. RPA70 fragments were subjected to crystal trials in the presence of single-stranded DNA, and diffraction quality crystals were obtained for RPA181-422 bound to octadeoxycytidine. The RPA181-422 co-crystals belonged to the P2(1)2(1)2(1) space group, with unit cell dimensions of a = 34.3 A, b = 78.0 A, and c = 95.4 A and diffracted to a resolution of 2.1 A.  相似文献   

17.
The regional distributions of the G protein beta subunits (Gbeta1-beta5) and of the Ggamma3 subunit were examined by immunohistochemical methods in the adult rat brain. In general, the Gbeta and Ggamma3 subunits were widely distributed throughout the brain, with most regions containing several Gbeta subunits within their neuronal networks. The olfactory bulb, neocortex, hippocampus, striatum, thalamus, cerebellum, and brainstem exhibited light to intense Gbeta immunostaining. Negative immunostaining was observed in cortical layer I for Gbeta1 and layer IV for Gbeta4. The hippocampal dentate granular and CA1-CA3 pyramidal cells displayed little or no positive immunostaining for Gbeta2 or Gbeta4. No anti-Gbeta4 immunostaining was observed in the pars compacta of the substantia nigra or in the cerebellar granule cell layer and Purkinje cells. Immunoreactivity for Gbeta1 was absent from the cerebellar molecular layer, and Gbeta2 was not detected in the Purkinje cells. No positive Ggama3 immunoreactivity was observed in the lateral habenula, lateral septal nucleus, or Purkinje cells. Double-fluorescence immunostaining with anti-Ggamma3 antibody and individual anti-Gbeta1-beta5 antibodies displayed regional selectivity with Gbeta1 (cortical layers V-VI) and Gbeta2 (cortical layer I). In conclusion, despite the widespread overlapping distributions of Gbeta1-beta5 with Ggamma3, specific dimeric associations in situ were observed within discrete brain regions.  相似文献   

18.
Attachment of the complement component C3 to antigen-antibody (Ag-Ab) complexes (immune complexes, IC) is the key molecular event responsible for the elimination of many Ag in the form of Ag-Ab-C3b. The CH1 domain and the Fc region of the Ab, which have previously been involved in the binding of C3b, are also the targets of several bacterial IgG-binding proteins, particularly proteins G and A. Here we describe the ability of a small recombinant protein G domain (B2; 6.5 kDa) to inhibit the covalent binding of C3b to the Fc portion of IgG without affecting the binding to the Fab part. Protein G (B2 domain) produced a remarkable inhibition of covalent binding of C3b to IC formed with rabbit IgG, but none with the F(ab')2 fragment, indicating that B2 interferes with the C3b binding to the Fc region. A weak inhibition was observed with IC formed with mouse IgG2b which preferentially binds B2 domain on the CH1 domain of the Fab. To confirm these data, recombinant single-chain Ab devoid of CH1 domains (scAb), and including the rabbit or human Fc portion (hinge-CH2-CH3), were produced and used to form IC. Protein G-B2 domain inhibited C3b binding to IC formed with scAb of either human or rabbit constant regions, supporting the view of a specific blockade of C3b binding to the Fc region. A similar inhibition of C3b binding was observed using protein A instead of protein G B2 domain and the same set of IC. On the CH1 domain, C3b and B2 bind on opposite faces, and therefore do not interfere with each other in their binding. However, B2 domain bound to the inter-CH2-CH3 region impedes the C3b binding to the Fc. This inhibition clarifies the specificity of C3b for the different regions of IgG and explains how bacterial IgG-binding proteins provide the bacteria with a mechanism of evasion from the opsonizing action of complement and contribute to the virulence. This could be a general mechanism of escape because protein G binds the majority of mammalian Ig.  相似文献   

19.
Replication protein A (RPA), the heterotrimeric single-stranded-DNA (ssDNA) binding protein (SSB) of eukaryotes, contains two homologous ssDNA binding domains (A and B) in its largest subunit, RPA1, and a third domain in its second-largest subunit, RPA2. Here we report that Saccharomyces cerevisiae RPA1 contains a previously undetected ssDNA binding domain (domain C) lying in tandem with domains A and B. The carboxy-terminal portion of domain C shows sequence similarity to domains A and B and to the region of RPA2 that binds ssDNA (domain D). The aromatic residues in domains A and B that are known to stack with the ssDNA bases are conserved in domain C, and as in domain A, one of these is required for viability in yeast. Interestingly, the amino-terminal portion of domain C contains a putative Cys4-type zinc-binding motif similar to that of another prokaryotic SSB, T4 gp32. We demonstrate that the ssDNA binding activity of domain C is uniquely sensitive to cysteine modification but that, as with gp32, ssDNA binding is not strictly dependent on zinc. The RPA heterotrimer is thus composed of at least four ssDNA binding domains and exhibits features of both bacterial and phage SSBs.  相似文献   

20.
The ability of protein kinase C (PKC) to regulate the responsiveness of adenylyl cyclase to different activators was assessed. Membranes prepared from Sf9 cells infected with recombinant baculoviruses encoding either type II or IV adenylyl cyclase were incubated with recombinant PKCalpha (purified from Sf9 cells), and the effects on adenylyl cyclase activity were measured after reconstitution with Gsalpha, Gbetagamma, or forskolin. PKCalpha treatment of type II adenylyl cyclase leads to increases in basal, forskolin-stimulated, and betagamma-stimulated activities and greater sensitivity to stimulation by Gsalpha. Paradoxically, most of the betagamma potentiation of Gsalpha-stimulated activity is eliminated by pretreatment with PKCalpha. By contrast, treatment of type IV adenylyl cyclase with PKCalpha has little effect on the basal, forskolin-stimulated, or betagamma-stimulated activities but markedly reduces the Gsalpha-stimulated and betagamma-potentiated activity of this isoform. These studies demonstrate that protein kinases can alter both the activity of adenylyl cyclase isoforms and their responsiveness to G protein regulation, thereby altering the ability of adenylyl cyclases to integrate signals derived from multiple hormonal inputs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号