首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Stanca SE  Popescu IC  Oniciu L 《Talanta》2003,61(4):501-507
Two different approaches, both exploiting two enzymes cooperative functioning, to enhance the sensitivity of tyrosinase (PPO) based biosensor for amperometric detection of phenols have been compared. For this purpose, one monoenzyme electrode (PPO) and two bienzyme electrodes (PPO and d-glucose dehydrogenase, GDH; PPO and horseradish peroxidase, HRP) were constructed using agar-agar gel as enzyme immobilization matrix. The biosensors responses for l-tyrosine detection were recorded at −50 mV versus saturated calomel electrode (SCE). The highest sensitivity (74 mA M−1) was observed for the PPO-GDH couple, while that recorded for PPO-HRP couple system was only 32 times higher than that measured for monoenzyme electrode (0.01 mA M−1). The ability of the PPO-, PPO-GDH-, PPO-HRP-based biosensors to assay phenols was demonstrated by quantitative determination of phenol, 1,2-dihydroxybenzene, 1,3-dihydroxybenzene, 1,4-dihydroxybenzene, 2-amino-3 (4-hydroxyphenyl) propanoic acid, 2-hydroxytoluene, 3-hydroxytoluene, 4-hydroxytoluene, 4-clorophenol, 3-clorophenol, 2-clorophenol, 4-hydroxybenzoic acid.  相似文献   

2.
《Analytical letters》2012,45(8):783-803
Recent trends and challenges in developing carbon nanotubes (CNT) based sensors and biosensors for the detection of organophosphate (OP) pesticides and other organic pollutants in water are reviewed. CNT have superior electrical, mechanical, chemical, and structural properties over conventional materials such as graphite. At the same time CNT based sensors and biosensors are more efficient compared to the existing traditional techniques such as high-performance liquid chromatography or gas chromatography, because they can provide rapid, sensitive, simple, and low-cost on-field detection. The measurement protocols can be based on enzymatic and non-enzymatic detection. The enzyme acetylcholinesterase (AChE) is used with CNT for fabricating ultrasensitive biosensors for OP detection involving different immobilization schemes such as adsorption, crosslinking, and layer-by-layer self-assembly. This protocol relies on measuring the degree of enzyme inhibition as means of OP quantification. The other enzyme used along with CNT for OP detection is organophosphate hydrolase (OPH) which hydrolyzes the OP into detectable species that can be measured by amperometric or potentiometric methods. Different forms of CNT electrode materials can be used for fabricating such electrodes such as pure CNT and composite CNT. Due to their large surface area and hydrophobicity, CNT have also been used for the extraction and non-enzymatic electrochemical detection of OP with very high efficiency. The application of CNT and their novel properties for the adsorption and electrochemical detection of OP compounds is discussed in detail.  相似文献   

3.
Biosensors for d-lactate and acetaldehyde were developed, based on screen-printed electrodes and NAD+-dependent dehydrogenases. Modification of screen-printed electrodes with the mediator Meldola Blue or with Meldola Blue-Reinecke salt resulted in sensitive, low cost and reliable NADH detectors. The biosensors were realised in two configurations, as disposable and reusable devices. Single-use sensors were obtained by simple deposition of enzyme and cofactor on the surface of mediator-modified electrodes. Chronoamperometry was used for the detection of substrates in small volumes of samples (25 μl). Immobilisation of dehydrogenases by entrapment in poly(vinyl alcohol) bearing styrylpyridinium groups (PVA-SbQ) allowed sensors to be obtained with sufficient operational stability. Amperometry in stirred solutions was the detection technique with biosensors for multiple use. The 3σ detection limits for acetaldehyde were 1 μM by amperometry and 6 μM by chronoamperometry and for d-lactate-0.03 μM and 0.05 μM for reusable and disposable biosensors respectively. The biosensors were applied in the analysis of some French and Romanian wines.  相似文献   

4.
An easy covalent immobilization method used to develop enzyme biosensors based on carbon and gold screen printed electrodes (SPCEs and gold SPEs) is described. The linkage of biomolecules through 4-nitrobenzenediazonium tetrafluoroborate, mercaptopropionic acid and thioctic acid monolayers has been attempted using bare SPCEs and gold SPEs, as well as gold nanoparticles (AuNPs) modified SPCEs and gold SPEs. Direct covalent attachment of Cytochrome P450 2B4 (CYP450 2B4) to the transducer has been carried out by carbodiimide and hydroxysuccinimide. Experimental variables in the immobilization process and in the chronoamperometric determination of Phenobarbital (PB) have been optimized by the experimental design methodology. Reproducibility of the different biosensors has been checked under the optimum conditions, yielding values lower than 6%. Their performances have been shown by the determination of PB in pharmaceutical drugs.  相似文献   

5.
《Electroanalysis》2003,15(13):1109-1114
The electrochemical characterization of a hydrogen peroxide sensor based on a ferrocene‐containing polymer electrochemically deposited onto a platinum electrode is described. The redox polymer consists of a siloxane‐based homopolymer, with pendant electronically communicated ferrocenyl moieties. The electrodes were used as the transducer for glucose and lactate‐sensing enzyme sensors. Amperometric biosensors were prepared by immobilization of glucose oxidase (Gox) or lactate oxidase (Lox) onto these modified electrodes. The steady‐state amperometric response of the sensors is investigated as a function of the applied potential and substrate concentration. Interferences, sensitivity and stability of the sensors were also studied.  相似文献   

6.
Glucose biosensor enhanced by nanoparticles   总被引:4,自引:0,他引:4  
Glucose biosensors have been formed with glucose oxidase (GOD) immobilized in composite immobilization membrane matrix, which is composed of hydrophobic gold, or hydro-philic gold, or hydrophobic silica nanoparticles, or the combination of gold and silica nanoparticles, and polyvinyl butyral (PVB) by a sol-gel method. The experiments show that nanoparticles can significantly enhance the catalytic activity of the immobilization enzyme. The current response can be increased from tens of nanoamperometer (nA) to thousands of nanoamperometer to the same glucose concentration, and the electrodes respond very quickly, to about 1 min. The function of nanoparticles effect on immobilization enzyme has been discussed.  相似文献   

7.
《Electroanalysis》2006,18(4):319-326
The unique chemical and physical properties of nanoparticles make them extremely suitable for designing new and improved sensing devices, especially electrochemical sensors and biosensors. Many kinds of nanoparticles, such as metal, oxide and semiconductor nanoparticles have been used for constructing electrochemical sensors and biosensors, and these nanoparticles play different roles in different sensing systems. The important functions provided by nanoparticles include the immobilization of biomolecules, the catalysis of electrochemical reactions, the enhancement of electron transfer between electrode surfaces and proteins, labeling of biomolecules and even acting as reactant. This minireview addresses recent advances in nanoparticle‐based electrochemical sensors and biosensors, and summarizes the main functions of nanoparticles in these sensor systems.  相似文献   

8.
The preparation and characterization of an amperometric glucose biosensor based on the entrapment of glucose oxidase (GOx) in a polyacrylamide microgel is described. This study proves that polyacrylamide microgels provide an excellent matrix for GOx immobilization that can be used as a biological material in amperometric biosensors. The interference produced by ascorbic and uric acid has been eliminated by including acrylic acid in the polymeric matrix. With this modification, we obtain an adequate device for glucose determination in complex samples such as blood and serum. The study of the temperature effect in the response of biosensors indicates that swelling of the microgels directly influences the enzymatic activity. Thus, the behaviour of the enzyme in the swollen microgels is similar to the enzyme in solution, but the enzyme's activation energy increases when the water content in the microgels decreases. One important property of these biosensors is their remarkable stability. After 4 months of its manufacture, there is no loss in the initial response. Furthermore, the enzymatic activity of freeze-dried microgels containing enzyme remains unaltered for at least 18 months.  相似文献   

9.
MXenes are recently developed two-dimensional layered materials composed of early transition metal carbides and/or nitrides that provide unique characteristics for biosensor applications. This review presents the recent progress made on the usage and applications of MXenes in the field of electrochemical biosensors, including microfluidic biosensors and wearable microfluidic biosensors, and highlights the challenges with possible solutions and future needs. The multilayered configuration and high conductivity make these materials as an immobilization matrix for the biomolecule immobilization with activity retention and to be explored in the fabrication of electrochemical sensors, respectively. First, how the MXene nanocomposite as an electrode modifier affects the sensing performance of the electrochemical biosensors based on enzymes, aptamer/DNA, and immunoassays is well described. Second, recent developments in MXene nanocomposites as wearable biosensing platforms for the biomolecule detection are highlighted. This review pointed out the future concerns and directions for the use of MXene nanocomposites to fabricate advanced electrochemical biosensors with high sensitivity and selectivity. Specifically, possibilities for developing microfluidic electrochemical sensors and wearable electrochemical microfluidic sensors with integrated biomolecule detection are emphasized.  相似文献   

10.
《Electroanalysis》2005,17(1):73-78
The performance of enzymatic biosensors based on the immobilization of different enzymes within a carbon nanotubes paste electrode (CNTPE) prepared by dispersion of multi‐wall carbon nanotubes (MWNT) and mineral oil is reported in this work. The strong electrocatalytic activity of carbon nanotubes towards the reduction of hydrogen peroxide and quinones and the oxidation of NADH have allowed an effective low‐potential amperometric determination of lactate, phenols, catechols and ethanol, in connection with the incorporation of lactate oxidase, polyphenol oxidase and alcohol dehydrogenase/NAD+, respectively, within the composite matrix. Compared to the analogous enzymatic CPEs, a great enhancement in the response is observed at the enzymatic CNTPEs. Therefore, highly sensitive lactate, phenols, catechols and alcohols biosensors without using any metal or redox mediator can be obtained with this new composite material.  相似文献   

11.
The integration of flexible anchoring groups bearing imidazolyl or pyridyl substituents into the structure of electrodeposition paints (EDP) is the basis for the parallel synthesis of a library containing 107 members of different cathodic and anodic EDPs with a high variation in polymer properties. The obtained EDPs were used as immobilization matrix for biosensor fabrication using glucose oxidase as a model enzyme. Amperometric glucose sensors based on the different EDPs showed a wide variation in their sensor characteristics with respect to the apparent Michaelis-Menten constant (KM(app)) representing the linear measuring range and the maximum current (Imax(app)). Based on these results first assumptions concerning the impact of different side chains in the EDP on the expected biosensor properties could be obtained allowing for an improved rational optimization of EDPs used as immobilization matrix in amperometric biosensors.  相似文献   

12.
《Electroanalysis》2006,18(18):1737-1748
Layer‐by‐layer (LBL) assemblies, which have undergone great progress in the past decades, have been used widely in the construction of electrochemical biosensors. The LBL assemblies provide a strategy to rationally design the properties of immobilized films and enhance the performance of biosensors. The following review focuses on the application of LBL assembly technique on electrochemical enzyme biosensors, immunosensors and DNA sensors.  相似文献   

13.
导电聚合物具有良好的导电性能,可以作为分子导线使电子在生物活性物质与电极间直接传递,是构建生物传感器的一种新型材料.聚吡咯(PPy)具有导电性、生物相容性、易固定等特点,在传感器中用于固定生物活性物质有着良好的应用前景.该文简要介绍了导电聚吡咯的合成方法及掺杂机理,重点评述了聚吡咯用于固定生物活性物质构建生物传感器的多...  相似文献   

14.
《Analytical letters》2012,45(5):849-865
Abstract

In this paper we report on the construction principle and performance of an amperometric 3-enzyme sensor for sucrose based on crystalline bacterial cell surface layers (S-layers) as immobilization matrix for the biological components.

Isoporous, crystalline surface layers (S-layers) have been identified as outermost cell envelope layer in many bacteria. Since they are composed of identical protein or glycoprotein subunits with functional groups in well defined positions and orientations, they represent ideal matrices for the controlled and reproducible immobilization of functional macromolecules, as required for the development of biosensors. Apart from single enzyme sensors, which were described earlier, a strikingly simple method for the assembly and optimization of multistep systems was developed. For the fabrication of an amperometric sucrose sensor invertase, mutarotase and glucose oxidase were individually immobilized on S-layer fragments isolated from Clostridium thermohydrosulfuricum L111-69 via aspartic acid as spacer molecules. Subsequently, appropriate mixtures of enzyme loaded S-layer fragments were deposited on a microfiltration membrane and finally, the composite multifunctional sensing layer was sputtered with gold in order to establish a good metal contact. Amperometric sucrose measurements based on H2O2 oxidation revealed a high signal level (1 μA?1/cm2?mmol sucrose), 5 min response time and a linear range up to 30 mM sucrose as the main characteristics of the S-layer sucrose sensor.  相似文献   

15.
Single-Walled Carbon Nanotubes (SWCNTs) possess a wealth of exceptional structural, mechanical and electronic properties. These have made them potentially useful for applications in nanotube-reinforced materials, nanoelectronic devices, field emitters, probe tips for SPM, as well as for sensors, biosensors, and actuators. However, manipulation and processing of SWCNTs has been limited by their insolubility in most common solvents, although some dissolution has recently been obtained. Their chemical modification might pave the way to many useful applications, including the preparation of composite materials or the immobilization of biological molecules as enzymes (i.e., for biosensors and electrochemical sensors). Attachment of oxygen-containing functional groups (i.e., carboxy groups, carbonyl groups, hydroxy groups, etc.) on the surface of the carbon nanotubes could be achieved using different pretreatments of the nanostructured material. These involved (a) chemical and physical procedures; and (b) electrochemical functionalization. Different attempts at sidewall modification have been hampered by the presence of significant contaminants as graphitic and amorphous carbon or have required solubilization via chemical reactions on the ends of cut nanotubes. A more accommodating and direct approach to functionalize nanotubes is therefore required. We report here the sidewall functionalization of purified SWCNTs, obtained by different approaches and finally, we can discuss possible applications of functionalized SWCNTs in the sensing area.  相似文献   

16.
The development of biosensors has been one of the key areas in biotechnology and biomedical studies. Often it is difficult to investigate the immobilized biomolecules on the surfaces for biosensor optimization. Atomic force microscopy (AFM) should provide an ideal means for the visualization of biosensor surface and for the investigation of biomolecule activities. Therefore, AFM has been employed to study the surface topography of immobilized glutamate dehydrogenase (GDH) on two-dimensional glutamate biosensor surfaces. Correlation between the surface topography and the activity of the biosensor was investigated. Surface analysis has revealed that the enzymatic activity of the immobilized GDH molecules on the biosensor surface is linked to surface roughness, as measured by the peak-to-valley distance. Fractal dimension of the immobilization sensor surface was found to be a good parameter for judging the quality of the immobilized biosensors. As enzyme immobilization time increases, the biosensor has its maximum activity with around 18 h of immobilization in 10(-6) M GDH solution. Various biosensors prepared under different experimental conditions have been studied by AFM. This technique is shown to be an effective tool to characterize biosensor surfaces.  相似文献   

17.
Structural characteristics an cyclic voltammetry of three amperommetric biosensors based on immobilization of tyrosinase on a Sonogel-Carbon electrode for detection of phenols are described. Cyclic voltammetry was applied to study the electrochemical behaviour of the electrode and the electrochemical reaction on the electrode surface. Scanning electron microscopy, X-ray energy dispersive spectroscopy and atomic force microscopy were used for the structure characterization of the electrode surface, enzyme film and polymers coatings. The influence of additive-protective polymers, such as polyethylene glycol and perfluorinated-Nafion ion-exchanger on the surface of the biosensor were explored.  相似文献   

18.
The development of biosensors has been one of the key areas in biotechnology and biomedical studies. Often it is difficult to investigate the immobilized biomolecules on the surfaces for biosensor optimization. Atomic force microscopy (AFM) should provide an ideal means for the visualization of biosensor surface and for the investigation of biomolecule activities. Therefore, AFM has been employed to study the surface topography of immobilized glutamate dehydrogenase (GDH) on two-dimensional glutamate biosensor surfaces. Correlation between the surface topography and the activity of the biosensor was investigated. Surface analysis has revealed that the enzymatic activity of the immobilized GDH molecules on the biosensor surface is linked to surface roughness, as measured by the peak-to-valley distance. Fractal dimension of the immobilization sensor surface was found to be a good parameter for judging the quality of the immobilized biosensors. As enzyme immobilization time increases, the biosensor has its maximum activity with around 18 h of immobilization in 10–6 M GDH solution. Various biosensors prepared under different experimental conditions have been studied by AFM. This technique is shown to be an effective tool to characterize biosensor surfaces.  相似文献   

19.
生物电子学—现代分析化学新发展的重要领域   总被引:1,自引:0,他引:1  
生物电子学技术是基于电子学与生物技术的发展而诞生的新领域。本文阐述并展望在这领域的最新发展。包括:生物计算机与分子计算机,生物传感器,酶电极的生物催化作用,基于离子电极和生物离子学的生物传感器,导电聚合物传感器等。  相似文献   

20.
Enzymes, primarily different types of oxidases and most commonly peroxidase, are often used in the construction of biosensors. Enzymatic biosensors, due to their small size, easy to handle construction, accuracy and specificity, are powerful healthcare tools commonly used for the diagnosis of diseases for more than 20 years. Unfortunately, the loss of enzymatic activity during the immobilization of enzymes into biosensors has been a recent major problem. Hence, nonenzymatic electrochemical sensors based on organic and inorganic nanostructures have gained great attention in the last few years. In this short review, different types of nanostructures and nanocomposites and their practical applications in the construction of nonenzymatic electrochemical sensors in healthcare and diagnosis are described and summarized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号