首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigate the effects of penetration electric fields, meridional thermospheric neutral winds, and composition perturbation zones (CPZs) on the distribution of low-latitude plasma during the 7–11 November 2004 geomagnetic superstorm. The impact on low-latitude plasma was assessed using total electron content (TEC) measurements from a latitudinally distributed array of ground-based GPS receivers in South America. Jicamarca Radio Observatory incoherent scatter radar measurements of vertical E×B drift are used in combination with the Low-Latitude IONospheric Sector (LLIONS) model to examine how penetration electric fields and meridional neutral winds shape low-latitude TEC. It is found that superfountain conditions pertain between ~1900 and 2100 UT on 9 November, creating enhanced equatorial ionization anomaly (EIA) crests at ±20° geomagnetic latitude. Large-amplitude and/or long-duration changes in the electric field were found to produce significant changes in EIA plasma density and latitudinal location, with a delay time of ~2–2.5 h. Superfountain drifts were primarily responsible for EIA TEC levels; meridional winds were needed only to create hemispherical crest TEC asymmetries. The [O/N2] density ratio (derived from the GUVI instrument, flown on the TIMED satellite) and measurements of total atmospheric density (from the GRACE satellites), combined with TEC measurements, yield information regarding a likely CPZ that appeared on 10 November, suppressing TEC for over 16 h.  相似文献   

2.
The interval 0000-1400 UT of the superstorm of November 20, 2003, has been studies based on the ACE/WIND data and the MIT2 magnetogram inversion technique. The distributions of the electric potential and currents, field-aligned currents, and Joule heat in the ionosphere have been calculated. The variable magnetotail length and powers coming into the magnetosphere, ionosphere and ring current have been estimated. The selected superstorm intervals, when it became possible to identify the disturbance mode produced by the interaction between the variable solar wind dynamic pressure and IMF effects, have been described. Spontaneous substorms, two types of driven responses to changes in IMF or in the solar wind dynamic pressure (P d ), zero events at simultaneous jumps of IMF and P d , and a previously unknown mode of saturation of the ionospheric electric field at a redistribution of the energy coming into the magnetosphere between the ionosphere and ring current are among the selected modes.  相似文献   

3.
The analytical aspects of the internal thermospheric waves (IW) theory development are reviewed. The statement of the problem is discussed: the choice of the boundary and initial conditions. Special attention is paid to the upper boundary, the existence of which is the direct consequence of the molecular free way growth with height. The model equations for long waves are derived which take into account dissipation, spherity and rotation of the earth. The wave disturbance evolution is represented by the mode dynamical variables with the characteristics for thermospheric waveguide vertical structure. Nonlinearity of general hydrothermodynamic system leads to mode interaction. Therefore the mode coefficient functions satisfy the system of equations that generalizes the system of coupled KdV. As part of the manifestations of nonlinearity, the mean field generation problem by the quasiperiodic IW is discussed. The analytical F2-ionosphere effect model is represented. The model is based on the ambipolar diffusion equation. The calculated results of F2 maximum height variations during magnetospheric substorms are compared with the empiric model data.  相似文献   

4.
The magnetospheric storm on November 20, 2003 was one of two greatest events in 1957–2003. The D st* index reached −472 nT, the polar cap potential drop exceeded 200 kV, the polar cap boundary expanded up to Φ = 60°, the plasma layer density in the synchronous orbit reached 5 cm−3, and the inner edge of the plasma sheet penetrated up to L ∼ 1.5R E. The sequence of disturbance modes including some previously unknown is described. The distribution of the total power input into the magnetosphere between the ionosphere (power Q i) and the ring current (Q DR), as well as the relative roles of the spontaneous substorms and the driven disturbances in the creation of the DR current, is analyzed. The values of the parameter α = Q DR/Q i are calculated with a step of 5 min. It is shown that intervals with α ≪ 1 and with maximums α ≫ 1 were observed in the events under consideration. These results contradict the dominant opinion that the energy input into the magnetosphere during disturbances is primarily dissipated in the ionosphere. The two types of α maximums are observed: one in the mode of a prevailing spontaneous substorm and the other in the mixed mode of the substorm and driven disturbance. It is concluded that both types of the maximums and corresponding enhancements of the DR current appeared due to the plasma turbulization processes in the substorm current wedge. The parameter α appears to slowly increase from α ≪ 1 to α > 1 with increasing activity level; this trend supports the driven model of creating the DR current due to an increase in the electric field of the solar wind.  相似文献   

5.
The storm period of 8–12 November 2004 offers an opportunity for insight into the phenomena of low-latitude ionospheric structure during geomagnetically disturbed times because of the strength of the disturbances, the timing of the storms, and the instrumentation that was operating during the interval. We will take advantage of these factors to model the ambient ionosphere and the plasma turbulence responsible for radio scintillation within it, using the AFRL low-latitude ambient/turbulent ionospheric model and the storm-time model features described in the companion paper [Retterer, J.M., Kelley, M.C., 2009. Solar-wind drivers for low-latitude ionospheric models during geomagnetic storms. J. Atmos. Solar-Terr. Phys., this issue]. The model plasma densities show very good agreement with the densities measured by the Jicamarca ISR as well as with the total electron content (TEC) measured by the Boston College South American chain of GPS receivers. The detection by the radar of coherent returns from plasma turbulence match well the times of predicted ionospheric instability. The predicted geographic extent of the occurrence of equatorial plasma bubbles was matched by DMSP satellite observations and our forecasts of scintillation strength were validated with measurements of S4 at Ancon and Antofagasta by stations of the AFRL SCINDA network.  相似文献   

6.
The incoherent scatter technique has been applied since 1965 to study the ionosphere and thermosphere in different regions of the Earth. The analysis of the received signal gives access to several ionospheric parameters as a function of height: electron density, electron and ion temperatures and ion velocity. The derivation of these parameters is usually a complicated mathematical procedure that requires a non-linear regression program. A lot of research has been done in the ionospheric and atmospheric science using this technique.In this paper we describe how one derives the ion-neutral collision frequency and the ion composition parameters. It is usually difficult to retrieve these parameters with the incoherent scatter technique; as a result, in the standard data analysis procedure, an ionospheric model is used instead. However the numerical values chosen in the model have an influence on the other derived parameters. For instance the choice of a wrong ion composition leads to erroneous plasma temperatures. It is therefore important to assess by how much the standard procedure deviates from reality. For this reason we compare the ion composition and collision frequency retrieved from a sophisticated analysis scheme with the values that are derived from models under similar geophysical conditions.It also possible to derive from the observed ionospheric parameters the neutral concentrations, temperatures and winds, by using the energy and momentum equations for the ions and the neutrals. In this paper the different methods and the corresponding assumptions involved in the data analysis are discussed. We describe the influence of the frictional heating, of the vertical neutral wind and of the ionospheric perturbations on the derivation of the neutral atmospheric parameters. Our discussion of the processes involved are drawn from results obtained by Chatanika, Sondrestrom and EISCAT radars.  相似文献   

7.
In this paper, we present analyses of the great geomagnetic storms observed during last two cycles of solar activity. This study is based on data from a network of ionosondes located within the longitudinal sector of 80–150°Е. it was found that the superstorms were observed predominantly in equinox. Long-lasting severe decreases of ionization at high and middle latitudes were the most impressive storm effect. A short-time positive phase occurred in response to the onset of both ssc and recovery phases of the magnetic storm in the daytime at high and middle latitudes. Large time-varying rates of foF2 were observed at low latitudes. Modeling results of the ionospheric response to two superstorms are also presented. It is established that the storm effect at middle latitudes was controlled predominantly by disturbed thermospheric composition. At high latitudes, the impact of magnetospheric processes and thermospheric composition on the ionosphere was the same.  相似文献   

8.
Based on the thermosphere-Ionosphere-Electrodynamics General Circulation Model (TIEGCM), a thermospheric-ionospheric data assimilation and forecast system is developed. Using this system, we estimated the oxygen ions, neutral temperature, wind, and composition by assimilating the simulated data from Formosa Satellite 3/Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) occultation electron density profiles to evaluate their effects on the ionospheric forecast. An ensemble Kalman filter data assimilation scheme and combined state and parameter estimation methods are used to estimate the unobserved parameters in the model. The statistical results show that the neutral and ion compositions are more effective than the neutral temperature and wind for improving the forecast of the ionospheric electron density, whose root mean square errors in the assimilation period decreased by approximately 40%, 30%, and 10% due to the estimations of the neutral composition, oxygen ions, and neutral temperature, respectively. Due to the different physical and chemical processes that these parameters primarily affect, their e-folding times differ greatly from longer than 12 h for neutral composition to approximately 6 h for oxygen ions and 3 h for neutral temperature. The effect of estimating the neutral composition on improving the ionospheric forecast is greater than that of estimating the oxygen ions, which can be also be seen in an actual data assimilation experiment. This indicates that the neutral composition is the most important thermospheric parameter in ionospheric data assimilations and forecasts.  相似文献   

9.
The thermospheric and ionospheric effects of the precipitating electron flux and field-aligned-current variations in the cusp have been modelled by the use of a new version of the global numerical model of the Earths upper atmosphere developed for studies of polar phenomena. The responses of the electron concentration, ion, electron and neutral temperature, thermospheric wind velocity and electric-field potential to the variations of the precipitating 0.23-keV electron flux intensity and field-aligned current density in the cusp have been calculated by solving the corresponding continuity, momentum and heat balance equations. Features of the atmospheric gravity wave generation and propagation from the cusp region after the electron precipitation and field-aligned current-density increases have been found for the cases of the motionless and moving cusp region. The magnitudes of the disturbances are noticeably larger in the case of the moving region of the precipitation. The thermospheric disturbances are generated mainly by the thermospheric heating due to the soft electron precipitation and propagate to lower latitudes as large-scale atmospheric gravity waves with the mean horizontal velocity of about 690 ms–1. They reveal appreciable magnitudes at significant distances from the cusp region. The meridional-wind-velocity disturbance at 65° geomagnetic latitude is of the same order (100 ms–1) as the background wind due to the solar heating, but is oppositely directed. The ionospheric disturbances have appreciable magnitudes at the geomagnetic latitudes 70°–85°. The electron-concentration and -temperature disturbances are caused mainly by the ionization and heating processes due to the precipitation, whereas the ion-temperature disturbances are influence strongly by Joule heating of the ion gas due to the electric-field disturbances in the cusp. The latter strongly influence the zonal- and meridional-wind disturbances as well via the effects of ion drag in the cusp region. The results obtained are of interest because of the location of the  相似文献   

10.
The regularities in the southward drift of the ionospheric current centers and luminosity boundaries during strong magnetic storms of November 2003 and 2004 (with Dst ≈ ?400 and ?470 nT, respectively) are studied based on the global geomagnetic observations and TV measurements of auroras. It has been indicated that the eastward and westward electrojets in the dayside and nightside sectors simultaneously shift equatorward to minimal latitudes of Φ min ° ~53°–55°. It has been obtained that the Φ min ° latitude decreases with increasing negative values of Dst, IMF B z component, and westward electric field strength in the solar wind. The dependence of the electrojet equatorward shift velocity (V av) on the rate of IMF B z variations (ΔB z t) has been determined. It is assumed that the electrojet dynamics along the meridian is caused by a change in the structure of the magnetosphere and electric fields in the solar wind and the Earth’s magnetosphere.  相似文献   

11.
Numerical calculations of the thermospheric and ionospheric parameters above EISCAT are presented for quiet geomagnetic conditions in summer. The Global Self-consistent Model of the Thermosphere, Ionosphere and Protonosphere (GSM TIP) was used. The numerical results were obtained both with a self-consistent calculation of the electric fields of magnetospheric and dynamo-action origin and with the magnetospheric electric fields only. It was found that the dynamo-electric field has some effect on the ionospheric convection pattern during quiet geomagnetic conditions. It has a marked effect mainly on the zonal neutral wind component above EISCAT (±20m/s at 140 km altitude). We have studied the effects of various field-aligned current (FAC) distributions on thermosphere/ionosphere parameters and we show that a qualitative agreement can be obtained with region-I and -II FAC zones at 75° and 65° geomagnetic latitude, respectively. The maximum FAC intensities have been assumed at 03–21 MLT for both regions with peak values of 2.5 × 10–7 Am–2 (region I) and 1.25 × 10–7 A m–2 (region II). These results are in agreement with statistical potential distribution and FAC models constructed by use of EISCAT data. The lack of decreased electron density in the night-time sector as observed by the EISCAT radar was found to be due to the spatial distribution of ionospheric convection resulting from electric fields of magnetospheric origin.  相似文献   

12.
Results of the studies of ionospheric parameter variations during the intense geomagnetic storm on November 7–11, 2004, in the 20°–80° N, 60°–180° E sector are presented. The data of ionospheric stations and the results of total electron content (TEC) measurements at the network of the GPS ground-based receivers and of the GPS receiver onboard the CHAMP satellite were used. Periods of total absorption and blanketing sporadic E layers were observed at high latitudes, whereas durable negative disturbances typical of geomagnetic storms of high intensity were detected at midlatitudes. In the afternoon hours of local time on November 8, 2004, a large-scale ionospheric disturbance of a frontal type was detected on the basis of foF2 and TEC measurements. The disturbance propagated southwestward at a mean velocity of about 200 m/s. The comparison of the relative amplitude of this large-scale disturbance according to the total electron content (~70%) and foF2 (~80%) measurements made it possible to assume a large vertical scale of the disturbance.  相似文献   

13.
本文分析了电离层对2009年、2013年和2016年朝鲜核试验中地下核爆(Underground Nuclear Explosion,UNE)的响应.利用南北半球IGS站的GNSS-TEC观测数据,发现了在3次核试验期间的磁共轭电离层扰动现象.观测结果表明,3次UNE所产生的电离层扰动分别以228m·s-1、173m·s-1和147m·s-1的速度从核试验爆心地区径向传播.本文研究提出,UNE所产生的电离层TEC扰动是岩石圈-大气层-电离层耦合(Lithosphere-Atmosphere-Ionosphere Coupling,LAIC)电场渗透到电离层高度引发电动力学过程的结果.此外,LAIC电场可以沿磁力线映射到共轭半球,从而在共轭地区造成电离层TEC扰动.因此,在核试验地区附近以及其对应的磁共轭地区,UNE所产生的LAIC电场在电离层TEC扰动的形成中起着关键性的作用.  相似文献   

14.
Summary On November 1960 a special solar activity occured, producing characteristic disturbances in the ionosphere. Athens center followed this activity by vertical sounding and by Riometer recordings. They are evidences for proton events producing deep absorption in the ionosphere and aurora extending till 38° latitude. Some observations concerning July 1961 solar activity are reported. World wide decrease of the maximum electron density reported during the November period was observed also in Athens. Ionospheric disturbances following vertical sounding observations are of «negative» type.  相似文献   

15.
Observations from a network of specially equipped GPS scintillation receivers in Northern Europe are used to investigate the dynamics of ionospheric plasma during the storm events of 30 October and 20 November 2003. The total electron content (TEC) and scintillation data, combined with ionospheric tomography produced by the multi-instrument data analysis system (MIDAS), reveal strong enhancements and steep gradients in TEC during nighttime under a prevailing negative Bz component of the interplanetary magnetic field (IMF). Amplitude and phase scintillation maxima are often co-located with the TEC gradients at the edge of plasma patches, revealing the presence of small-scale irregularities and suggesting association with a tongue of ionization (TOI) convecting in an anti-sunward direction from the American sector across the polar cap. Similarities and differences between the ionospheric response to the two storms are investigated. The 30 October event reveals a quite complex scenario showing two phases of plasma dynamics: the former reflects the expected convection pattern for IMF Bz southward and the latter possibly indicates a sort of TEC plasma stagnation signature of the more complex convection patterns during several positive/negative excursions of IMF Bz.  相似文献   

16.
17.

本文基于2002年至2010年的GRACE卫星的观测密度统计分析南北极点的热层大气密度的世界时(即磁地方时)变化.研究发现:在9—11月份地球处于行星际磁场为背向太阳的扇区内(背向扇区)时,南极点热层密度在约17:00 UT(13:30 MLT)达到最大值,比日平均值高约22%;而在6—8月份,当地球处于行星际磁场为面向太阳的扇区内(面向扇区)时,北极点热层密度在06:00 UT(12:30 MLT)达到最大值,比日平均值高约13%.南极点的磁纬是-74°,其在15:30 UT处于磁地方时正午,恰与极尖区位置重合.北极点在5:30 UT处于磁地方时正午,此时北极点与极尖区位置最靠近.因此,极点热层大气密度的磁地方时变化可能是其周期性靠近极尖区的结果.南北极点热层密度的磁地方时变化分别在背向和面向扇区内更明显,这可能与行星际磁场By分量对南北半球密度的不同影响有关.统计结果还表明,极点热层大气密度的磁地方时变化在冬季半球内不明显.这可能是由于在冬季半球,沉降于极尖区的粒子相比夏季半球少、沉降高度低,因而能量沉降所引起的热层上部的密度增强较小.

  相似文献   

18.
GPS data from the International GNSS Service (IGS) network were used to study the development of the severe geomagnetic storm of November 7–12, 2004, in the total electron content (TEC) on a global scale. The TEC maps were produced for analyzing the storm. For producing the maps over European and North American sectors, GPS measurements from more than 100 stations were used. The dense network of GPS stations provided TEC measurements with a high temporal and spatial resolution. To present the temporal and spatial variation of TEC during the storm, differential TEC maps relative to a quiet day (November 6, 2004) were created. The features of geomagnetic storm attributed to the complex development of ionospheric storm depend on latitude, longitude and local time. The positive, as well as negative effects were detected in TEC variations as a consequence of the evolution of the geomagnetic storm. The maximal effect was registered in the subauroral/auroral ionosphere during substorm activity in the evening and night period. The latitudinal profiles obtained from TEC maps for Europe gave rise to the storm-time dynamic of the ionospheric trough, which was detected on November 7 and 9 at latitudes below 50°N. In the report, features of the response of TEC to the storm for European and North American sectors are analyzed.  相似文献   

19.
本文利用北半球的超级双极光雷达网数据,考察了一次行星际磁场南向突变时高纬电离层对流的响应特征,着重分析了响应的时间尺度. 对所研究的事件,行星际磁场南北分量在1.5 min内从+7 nT突变到-8 nT,而在突变前后约40 min内都保持相对稳定. 结果表明,电离层对流的初始响应发生在磁正午附近,相对于行星际磁场突变到达磁层顶的时间有大约3 min的滞后;响应与磁地方时有明显依赖关系,离磁正午越远,响应的滞后时间越长,晨昏两侧的对流响应比磁正午滞后约6 min,磁午夜的对流响应比磁正午滞后约12 min;对流重新趋于稳定的时间与磁地方时没有明显的依赖关系,该时间尺度约为10~14 min.  相似文献   

20.
本文利用Madrigal数据库的TEC数据对2001—2010年间的156次单主相型磁暴事件,统计分析了欧洲扇区从赤道到极光带共5个纬度区域的电离层暴特征,结果表明:(1)电离层暴有明显的纬度分布特征,正负暴出现次数的比例随纬度的降低呈现明显的增加趋势,但夏季赤道地区趋势相反,正负暴比例比更高纬度的反而降低;(2)与主相相比,恢复相期间大部分纬度地区正暴数量减少,负暴数量增加,但赤道地区恢复相期间正暴数量反而增加;(3)中低纬地区电离层暴随磁暴MPO地方时分布特征明显,正暴所对应的MPO主要分布在白天,而MPO发生在夜间容易引起负暴;(4)电离层负暴主要发生在夜间,中、高纬地区负暴的开始时间存在‘时间禁区’,但不同纬度‘时间禁区’的地方时分布有一定差异,正暴分布则相对分散.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号