首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 438 毫秒
1.
Biodiesel production by microalgal biotechnology   总被引:7,自引:0,他引:7  
Biodiesel has received much attention in recent years. Although numerous reports are available on the production of biodiesel from vegetable oils of terraneous oil-plants, such as soybean, sunflower and palm oils, the production of biodiesel from microalgae is a newly emerging field. Microalgal biotechnology appears to possess high potential for biodiesel production because a significant increase in lipid content of microalgae is now possible through heterotrophic cultivation and genetic engineering approaches. This paper provides an overview of the technologies in the production of biodiesel from microalgae, including the various modes of cultivation for the production of oil-rich microalgal biomass, as well as the subsequent downstream processing for biodiesel production. The advances and prospects of using microalgal biotechnology for biodiesel production are discussed.  相似文献   

2.
Use of microalgal biomass for renewable energy production has gained considerable attention in the world due to increasing global energy demand and negative environmental impacts of nonrenewable fossil fuels. Anaerobic digestion is one of the renewable technologies that microalgal biomass is converted into biogas by anaerobic archea. One of the main drawbacks of using microalgal biomass for biogas production is that certain types of microalgae has rigid cell wall characteristics, which limits accessibility of anaerobic archea to microalgal intracellular organic matter during hydrolysis phase. This limitation lowers efficiency of biogas production from microalgal biomass. However, introducing pretreatment methods prior to anaerobic digestion provides disruption of rigid microalgal cell wall and improve biogas yields from microalgal biomass. The objective of this paper was to review current knowledge related to pretreatment methods applied prior to anaerobic digestion of microalgal biomass. Efficiency and applicability of pretreatment methods mainly depend on type of microalgae, cell wall characteristics, and cost and energy requirements during pretreatment process. In this review, various type of pretreatment methods applied to microalgal biomass was discussed in detail with background knowledge and literature studies in their potential on maximization of biogas yields and their cost effectiveness, which is important for large‐scale applications. In the view of current knowledge, it was concluded that each pretreatment method has a relative contribution to improvement in biogas production depending on the type of microalgae. However, energy and cost requirements are the main limitations for pretreatment. So, further studies should focus on reduction of cost and energy demand by introducing combined methods, novel chemicals, and on‐site or immobilized enzymes in pretreatment to increase feasibility of pretreatment prior to anaerobic digestion in industrial scale.  相似文献   

3.
大力发展微藻生物质能源是解决能源危机和环境问题的有效途径。文章从微藻资源、微藻培养系统、培养物采收技术、微藻生物柴油炼制、含油微藻综合利用等方面出发,综述了中国微藻生物质能源专利的发展现状,旨在使科研工作者更加全面地了解这一领域发展趋势,并且促进科研工作者对自主知识产权的保护意识。  相似文献   

4.
Prospects of biodiesel production from microalgae in India   总被引:3,自引:0,他引:3  
Energy is essential and vital for development, and the global economy literally runs on energy. The use of fossil fuels as energy is now widely accepted as unsustainable due to depleting resources and also due to the accumulation of greenhouse gases in the environment. Renewable and carbon neutral biodiesel are necessary for environmental and economic sustainability. Biodiesel demand is constantly increasing as the reservoir of fossil fuel are depleting. Unfortunately biodiesel produced from oil crop, waste cooking oil and animal fats are not able to replace fossil fuel. The viability of the first generation biofuels production is however questionable because of the conflict with food supply. Production of biodiesel using microalgae biomass appears to be a viable alternative. The oil productivity of many microalgae exceeds the best producing oil crops. Microalgae are photosynthetic microorganisms which convert sunlight, water and CO2 to sugars, from which macromolecules, such as lipids and triacylglycerols (TAGs) can be obtained. These TAGs are the promising and sustainable feedstock for biodiesel production. Microalgal biorefinery approach can be used to reduce the cost of making microalgal biodiesel. Microalgal-based carbon sequestration technologies cover the cost of carbon capture and sequestration. The present paper is an attempt to review the potential of microalgal biodiesel in comparison to the agricultural crops and its prospects in India.  相似文献   

5.
It is increasing clear that biofuels can be a viable source of renewable energy in contrast to the finite nature, geopolitical instability, and deleterious global effects of fossil fuel energy. Collectively, biofuels include any energy-enriched chemicals generated directly through the biological processes or derived from the chemical conversion from biomass of prior living organisms. Predominantly, biofuels are produced from photosynthetic organisms such as photosynthetic bacteria, micro- and macro-algae and vascular land plants. The primary products of biofuel may be in a gas, liquid, or solid form. These products can be further converted by biochemical, physical, and thermochemical methods. Biofuels can be classified into two categories: primary and secondary biofuels. The primary biofuels are directly produced from burning woody or cellulosic plant material and dry animal waste. The secondary biofuels can be classified into three generations that are each indirectly generated from plant and animal material. The first generation of biofuels is ethanol derived from food crops rich in starch or biodiesel taken from waste animal fats such as cooking grease. The second generation is bioethanol derived from non-food cellulosic biomass and biodiesel taken from oil-rich plant seed such as soybean or jatropha. The third generation is the biofuels generated from cyanobacterial, microalgae and other microbes, which is the most promising approach to meet the global energy demands. In this review, we present the recent progresses including challenges and opportunities in microbial biofuels production as well as the potential applications of microalgae as a platform of biomass production. Future research endeavors in biofuel production should be placed on the search of novel biofuel production species, optimization and improvement of culture conditions, genetic engineering of biofuel-producing species, complete understanding of the biofuel production mechanisms, and effective techniques for mass cultivation of microorganisms.  相似文献   

6.
Even though microalgae are able to produce various valuable metabolites, microalgal culture on an industrial scale still faces challenging difficulties. Open systems may be cheaper to construct, easier to operate and maintain, and possess greater surface area to volume ratio, but they are also easily contaminated, have high water loss due to evaporation, and suffer from unfavorable weather. On the other hand, closed photobioreactor systems possess higher biomass yields, better control over culture parameters, and lower contamination risks. However, photobioreactors are costlier to construct and maintain. Thus, a hybrid semi-closed thin layer cascade photobioreactor was proposed to cultivate high-density microalgal cultures for biodiesel production. Computational fluid dynamics analysis was carried out to observe fluid behavior in the hybrid photobioreactor design. The simulation results showed satisfactory performance in the improved design, making the photobioreactor a potential candidate for microalgal biodiesel production.  相似文献   

7.
Storing multiple energy forms from microalgae is not only facile but also lowers the cost of culturing the microalgae. Among many microalgae, diatoms are microscopic glass menageries which are responsible for converting stored lipids and biomass into hydrogen, besides fixing 25% of global CO2. Besides this their silica frustules are also nature's naturally available bionanomaterials which have immense applications in nanotechnology for hydrogen production and other energy storage. The diatom frustules get hybridized with various chemical and biological components to generate or store hydrogen in various fuel cells. In laboratory these live diatoms can be allowed to culture in various designed solar panel photobioreactors better known as diatom solar panels for high and low value-added products essentially biofuel and fucoxanthin. The present review thus discusses about possible scope and approaches to produce hydrogen from live diatom and as well as from its biomass in specially designed photobioreactors. This truly has economic aspects of hydrogen production from diatoms in comparison to other microalgae which needs to be explored for its wide applications due to its robustness and abundance occurrence.  相似文献   

8.
As fossil fuel prices increase and environmental concerns gain prominence, the development of alternative fuels from biomass has become more important. Biodiesel produced from microalgae is becoming an attractive alternative to share the role of petroleum. Currently it appears that the production of microalgal biodiesel is not economically viable in current environment because it costs more than conventional fuels. Therefore, a new concept is introduced in this article as an option to reduce the total production cost of microalgal biodiesel. The integration of biodiesel production system with methane production via anaerobic digestion is proved in improving the economics and sustainability of overall biodiesel stages. Anaerobic digestion of microalgae produces methane and further be converted to generate electricity. The generated electricity can surrogate the consumption of energy that require in microalgal cultivation, dewatering, extraction and transesterification process. From theoretical calculations, the electricity generated from methane is able to power all of the biodiesel production stages and will substantially reduce the cost of biodiesel production (33% reduction). The carbon emissions of biodiesel production systems are also reduced by approximately 75% when utilizing biogas electricity compared to when the electricity is otherwise purchased from the Victorian grid. The overall findings from this study indicate that the approach of digesting microalgal waste to produce biogas will make the production of biodiesel from algae more viable by reducing the overall cost of production per unit of biodiesel and hence enable biodiesel to be more competitive with existing fuels.  相似文献   

9.
Microalgae for biodiesel production and other applications: A review   总被引:18,自引:0,他引:18  
Sustainable production of renewable energy is being hotly debated globally since it is increasingly understood that first generation biofuels, primarily produced from food crops and mostly oil seeds are limited in their ability to achieve targets for biofuel production, climate change mitigation and economic growth. These concerns have increased the interest in developing second generation biofuels produced from non-food feedstocks such as microalgae, which potentially offer greatest opportunities in the longer term. This paper reviews the current status of microalgae use for biodiesel production, including their cultivation, harvesting, and processing. The microalgae species most used for biodiesel production are presented and their main advantages described in comparison with other available biodiesel feedstocks. The various aspects associated with the design of microalgae production units are described, giving an overview of the current state of development of algae cultivation systems (photo-bioreactors and open ponds). Other potential applications and products from microalgae are also presented such as for biological sequestration of CO2, wastewater treatment, in human health, as food additive, and for aquaculture.  相似文献   

10.
Carbon dioxide (CO2) is one of the most important contributors for the increase of the greenhouse effect. CO2 concentrations are increasing in the last decades mainly due to the increase of anthropogenic emissions. To reduce the effects caused by this environmental problem, several technologies were studied to capture CO2 from large emission source points: (i) absorption; (ii) adsorption; (iii) gas-separation membranes; and (iv) cryogenic distillation. The resulting streams with high CO2 concentrations are transported and stored in geological formations. However, these methodologies, known as carbon capture and storage (CCS) technologies, are considered as short-term solutions, as there are still concerns about the environmental sustainability of these processes.A promising technology is the biological capture of CO2 using microalgae. These microorganisms can fix CO2 using solar energy with efficiency ten times greater than terrestrial plants. Moreover, the capture process using microalgae has the following advantages: (i) being an environmental sustainable method; (ii) using directly the solar energy; and (iii) co-producing high added value materials based on biomass, such as human food, animal feed mainly for aquaculture, cosmetics, medical drugs, fertilizers, biomolecules for specific applications and biofuels. Approaches for making CO2 fixation by microalgae economically competitive in comparison with CCS methodologies are discussed, which includes the type of bioreactors, the key process parameters, the gaseous effluents and wastewater treatment, the harvesting methods and the products extracted by microalgal biomass.  相似文献   

11.
Microalgae have been proposed as possible alternative feedstocks for the production of biodiesel because of their high photosynthetic efficiency. The high energy input required for microalgal culture and oil extraction may negate this advantage, however. There is a need to determine whether microalgal biodiesel can deliver more energy than is required to produce it. In this work, net energy analysis was done on systems to produce biodiesel and biogas from two microalgae: Haematococcus pluvialis and Nannochloropsis. Even with very optimistic assumptions regarding the performance of processing units, the results show a large energy deficit for both systems, due mainly to the energy required to culture and dry the microalgae or to disrupt the cell. Some energy savings may be realized from eliminating the fertilizer by the use of wastewater or, in the case of H. pluvialis, recycling some of the algal biomass to eliminate the need for a photobioreactor, but these are insufficient to completely eliminate the deficit. Recommendations are made to develop wet extraction and transesterification technology to make microalgal biodiesel systems viable from an energy standpoint.  相似文献   

12.
In this work, the screening of 147 microalgal strains from the Persian Gulf and the Qeshm Island (Iran) were done in order to choose the best ones, in terms of growth (biomass) rate and lipid content for biodiesel production. A methodology, combining experiments in lab-scale and pilot plant (open pond) used to produce and evaluate biomass and lipid productivity is presented for the systematic investigation of the potential of different microalgae species. The culture conditions, including photo flux (180 ??E m−2 s−1), photoperiod (12 h light/dark), temperature (25 °C), pH (≈8), air (carbon dioxide) and growth medium, were kept constant for all experiments. Microalgae were screened in two stages using optical density (for evaluation of biomass concentration) and Nile red and gas chromatography (for determination of lipid content and fatty acid fractions). In general, maximum specific growth rate and the maximum biomass productivity were obtained after 8-12-day culture. Nannochloropsis sp. and Neochloris sp. were selected from the marine microalgal culture collection, due to their high biomass (50 and 21.7 g L−1, respectively) and oil content (52% and 46%, respectively). If the purpose is to produce biodiesel only from one species, Nannochloropsis sp. presented the most adequate fatty acid profile, namely linolenic and other polyunsaturated fatty acids. However, the microalgae Chlorella sp. can also be used if associated with other microalgal oils. In addition, selected strains could be potent candidates for commercial production in the open pond culture.  相似文献   

13.
We have investigated, for the first time, the alkaline pre-treatment of microalgal biomass, from the species Chlorococcum infusionum, using NaOH for bioethanol production. This pre-treatment step aims to release and breakdown entrapped polysaccharides in the microalgae cell walls into fermentable subunits. Three parameters were examined here; the concentration of NaOH, temperature and the pre-treatment time. The bioethanol concentration, glucose concentration and the cell size were studied in order to determine the effectiveness of the pre-treatment process. Microscopic analysis was performed to confirm cell rupturing, the highest glucose yield was determined to be 350 mg/g, and the maximum bioethanol yield obtained was 0.26 g ethanol/g algae using 0.75% (w/v) of NaOH and 120 °C for 30 min. Overall, the alkaline pre-treatment method proved to be promising option to pre-treat microalgal biomass for bioethanol production.  相似文献   

14.
《Biomass & bioenergy》2005,28(2):219-228
During the last three decades, driving forces behind the development of short-rotation willow coppice (SRWC) in Sweden have been changing from a primary focus on biomass production towards emphasis on environmental applications. In most cases, current commercial SRWC practice is geared towards a combination of biomass production for energy purposes and environmental goals. The latter goals range from decreasing the impact of specific contaminants in the environment to organic waste handling in a recycling system in urban and/or agricultural areas.Where biomass production and pollutant management overlap, the science of phytoremediation has its practical application. Through phytoremediation, waste products that previously have been a burden for the society can be used as valuable resources to increase short-rotation willow biomass production.In this paper we will present the terminology and definitions of different types of phytoremediation. We also give an overview of five different cases of phytoremediation activities with a potential for large-scale implementation. Some of the types of activities are already commercially used in Sweden; others seem promising but still need further development.  相似文献   

15.
Algal biomass is considered as an alternative raw material for biofuel production. The search for new types of raw materials including high-energy types of microalgae remains relevant, since the share of motor fuels in the world energy balance remains consistently high (about 35%) with the oil price characterized by high volatility. The authors have considered the advantages of microalgae as raw materials for fuel production. Biochemical and thermochemical conversion are proposed as technologies for their processing. The paper presents the results of the study on the pyrolysis of the biomass of the blue-green microalgae/cyanobacterium Arthrospira platensis rsemsu 1/02-P clonal culture from the collection of the Research Laboratory of Renewable Energy Sources of the Lomonosov Moscow State University. The experimental investigation on the pyrolysis process of microalgal biomass has been carried out with the experimental setup made at the Institute of High Temperatures RAS in pure nitrogen 6.0 to create an oxygen-free medium with a linear heating rate of 10°С/min from room temperature to 1,000°С. The entire pyrolysis process has proceeded in the endothermic region. The specific values for solid residue, pyrolysis liquid and gaseous products have been experimentally determined. The following products have been manufactured by pyrolysis of microalgal biomass weighing 15 g: 1) char with a solid residue mass of 2.68 g, or 17.7% of MAB initial mass (while 9.3% of MAB initial mass has remained in the reactor); 2) pyrolysis liquid with a mass of 3.3 g, or 21.9% of initial mass; 3) noncondensable pyrolysis gases, 1.15 L. The specific volumetric gas yield (amount of gas released from 1 kg of RM) has amounted to 0.076 nm³/kg.In the paper, the analysis of the composition and specific volumetric yield of non-condensable pyrolysis gases produced in the pyrolysis process depending on temperature has been carried out. It is shown that the proportion of high-calorific components of the gas mixture (hydrogen, methane and carbon monoxide) increases with the temperature increase. The heating value assessment for the mixture of these gases has been performed as well.  相似文献   

16.
Algal biomass is a promising candidate for biofuels/chemicals production in recent decades due to their huge availability and ease of cultivation methods when compared to terrestrial crops. Anaerobic digestion (AD) of algal biomass is viable option for green and sustainable biorefinery to produce energy and waste minimization. In this study, the feasibility of microalgal and macroalgal biomass on biomethane production and evaluated for mono-digestion and co-digestion process. The experiments resulted showed that mono-digestion gave relatively lower methane yield (MY) of 102–180 mL/g VS than co-digestion experiments. Co-digestion of microalgae and macroalgae biomass in the ratio of 2:8 provided the peak MY of 256 mL/g VS with an increment in MY over 40–70% than the individual algal biomass. The kinetic analysis showed that synergic effect of co-digestion with proper nutrient balance promoted the methane conversion yield from algal biomass with reduction in lag-phase time and overall improved process performances. Co-digestion of mixed algal strain is a feasible strategy to boost-up the performance of AD with relative easiness in real-field applications.  相似文献   

17.
Microalgae cultivation has gained increased attention from research and industry sectors in recent years, due to the wide variety of applications for the produced biomass, such as biofuels and substances of high economic value. Indirect biophotolysis biohydrogen production from microalgae has been shown recently to be limited by the amount of accumulated biomass during the growth phase. As a result, this study focused on developing a strategy to increase biohydrogen generation via biomass production increase through microalgae cultivation using exhaust gases from diesel engines. In order to achieve that objective, four simultaneous cultures were conducted to compare the growth of microalgae under pure air and emissions injection, in different flow regimes. An indigenous microalgae strain was selected to be robust under different weather conditions and was identified as Acutodesmus obliquus through rDNA sequence analysis. The results indicate an increase in biomass production of about 2.8 times for the best case of cultivation with emissions in comparison to a compressed air condition. Besides the growth analyses, the potential for treating the hazardous emissions injected into the system was investigated and the data demonstrated that the CO2 and NOx content was substantially reduced, showing that no damage to the microalgae is caused by the diesel engine emissions. Numerical simulation results for the H2 production indirect biophotolysis demonstrate that there is an optimal rhythm for maximum time averaged H2 production rate, and that the stoichiometrically limited total H2 production is augmented by a similar factor to microalgae biomass production increase.  相似文献   

18.
Biohydrogen is usually produced via dark fermentation, which generates CO2 emissions and produces soluble metabolites (e.g., volatile fatty acids) with high chemical oxygen demand (COD) as the by-products, which require further treatments. In this study, mixotrophic culture of an isolated microalga (Chlorella vulgaris ESP6) was utilized to simultaneously consume CO2 and COD by-products from dark fermentation, converting them to valuable microalgae biomass. Light intensity and food to microorganism (F/M) ratio were adjusted to 150 μmol m−2 s−1 and F/M ratio, 4.5, respectively, to improve the efficiency of assimilating the soluble metabolites. The mixotrophic microalgae culture could reduce the CO2 content of dark fermentation effluent from 34% to 5% with nearly 100% consumption of soluble metabolites (mainly butyrate and acetate) in 9 days. The obtained microalgal biomass was hydrolyzed with 1.5% HCl and subsequently used as the substrate for bioH2 production with Clostridium butyricum CGS5, giving a cumulative H2 production of 1276 ml/L, a H2 production rate of 240 ml/L/h, and a H2 yield of 0.94 mol/mol sugar.  相似文献   

19.
The increasingly severe environmental pollution and energy shortage issues have demanded the production of renewable and sustainable biofuels to replace conventional fossil fuels. Lignocellulosic (LC) biomass as an abundant feedstock for second-generation biofuel production can help overcome the shortcomings of first-generation biofuels related to the “food versus fuel” debate and feedstock availability. Embracing the “circular bioeconomy” concept, an integrated biorefinery platform of LC biomass can be performed by employing different conversion technologies to obtain multiple valuable products. This review provides an overview of the principles and applications of thermochemical processes (pyrolysis, torrefaction, hydrothermal liquefaction, and gasification) and biochemical processes (pretreatment technologies, enzyme hydrolysis, biochemical conversion processes) involved in LC biomass biorefinery for potential biofuel applications. The engineering perspective of LC biofuel production on separate hydrolysis and fermentation (SHF), simultaneous saccharification and fermentation (SSF), simultaneous saccharification and co-fermentation (SSCF), and consolidated bioprocessing (CBP) were also discussed.  相似文献   

20.
This paper primarily presents an overall review of the use of microalgae as a biofuel feedstock. Among the microalgae that have potential as biofuel feedstock, Chlorella, specifically, was thoroughly discussed because of its ability to adapt both to heterotrophic and phototrophic culture conditions. The lipid content and biomass productivity of microalgae can be up to 80% and 7.3 g/l/d based on the dried weight of biomass, respectively, making microalgae an ideal candidate as a biofuel feedstock. The set-up of the system and the biomass productivity of microalgae cultivated in an open pond and a photobioreactor were also compared in this work. The effect of the culture condition is discussed based on the two-stage culture period. The issues that were discussed include the light condition and the CO2, DO and N supply. The microalgal productivities under heterotrophic and phototrophic culture conditions were also compared and highlighted in this work. The harvesting process and type of flocculants used to aid the harvesting were highlighted by considering the final yield of biomass. A new idea regarding how to harvest microalgae based on positive and negative charges was also proposed in this work. The extraction methods and solvents discussed were primarily for the conventional and newly invented techniques. Conversion processes such as transesterification and thermochemical processes were discussed, sketched in figures and summarized in tables. The cost–benefit analysis of heterotrophic culture and the cultivation system was highlighted at the end of this work. Other benefits of microalgae are also mentioned in this work to give further support for the use of microalgae as a feedstock for biofuel production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号