首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
In both the scalar quasi-massless SUSY breaking scenario and dilaton-dominant SUSY breaking scenario, we analyze experimental constraints to the parameter space in M theory compactified on S1/Z2. The sparticle spectrum and some phenomenological predictions are given.  相似文献   

2.
We consider the phenomenology of a class of gauge-mediated supersymmetry (SUSY) breaking (GMSB) models at a Linear Collider (LC) with up to 500 GeV. In particular, we refer to a high-luminosity ( cm s) machine, and use detailed simulation tools for a proposed detector. Among the GMSB-model building options, we define a simple framework and outline its predictions at the LC, under the assumption that no SUSY signal is detected at LEP or Tevatron. We assess the potential of the LC to distinguish between the various SUSY model options and to measure the underlying parameters with high precision, including for those scenarios where a clear SUSY signal would have already been detected at the LHC before starting the LC operations. Our focus is on the case where a neutralino () is the next-to-lightest SUSY particle (NLSP), for which we determine the relevant regions of the GMSB parameter space. Many observables are calculated and discussed, including production cross sections, NLSP decay widths, branching ratios and distributions, for dominant and rare channels. We sketch how to extract the messenger and electroweak scale model parameters from a spectrum measured via, e.g. threshold-scanning techniques. Several experimental methods to measure the NLSP mass and lifetime are proposed and simulated in detail. We show that these methods can cover most of the lifetime range allowed by perturbativity requirements and suggested by cosmology in GMSB models. Also, they are relevant for any general low-energy SUSY breaking scenario. Values of as short as 10's of m and as long as 10's of m can be measured with errors at the level of 10% or better after one year of LC running with high luminosity. We discuss how to determine a narrow range () for the fundamental SUSY breaking scale , based on the measured , . Finally, we suggest how to optimise the LC detector performance for this purpose. Received: 19 May 1999 / Published online: 8 December 1999  相似文献   

3.
The goldstino–matter interactions given by the Goldberger–Treiman relations can receive higher dimensional operator corrections of , where M denotes the mass of the mediators through which SUSY breaking is transmitted. These corrections in the gauge mediated SUSY breaking models arise from loop diagrams, and an explicit calculation of such corrections is presented. It is emphasized that the Goldberger–Treiman vertices are valid only below the mediator scale, and at higher energies goldstinos decouple from the MSSM fields. The implication of this fact for gravitino cosmology in GMSB models is mentioned. Received: 22 December 1998 / Revised version: 1 July 1999 / Published online: 17 February 2000  相似文献   

4.
Recent analyses of cosmological data suggest the presence of an extra relativistic component beyond the Standard Model content. The Higgs–Dilaton cosmological model predicts the existence of a massless particle – the dilaton – associated with the spontaneous symmetry breaking of scale invariance and undetectable by any accelerator experiment. Its ultrarelativistic character makes it a suitable candidate for contributing to the effective number of light degrees of freedom in the Universe. In this Letter we analyze the dilaton production at the (p)reheating stage right after inflation and conclude that no extra relativistic degrees of freedom beyond those already present in the Standard Model are expected within the simplest Higgs–Dilaton scenario. The elusive dilaton remains thus essentially undetectable by any particle physics experiment or cosmological observation.  相似文献   

5.
This paper is a sequel of a previous one (Scalar mesons in a chiral quark model with glueball, Eur. Phys. J. A 8, 567 (2000)) where an attempt to construct an effective U(3)×U(3)-symmetric meson Lagrangian with a scalar glueball was made. The glueball was introduced by using the dilaton model on the base of scale invariance. The scale invariance breaking because of current quark masses and the scale anomaly of QCD, reproduced by the dilaton potential, was taken into account. However, in the previous paper, the scale invariance breaking because of the terms like h φφ2 and h σ , where φ and are the pseudoscalar and scalar isosinglets, was not taken into account. These terms are produced by the part of the 't Hooft interaction that is connected with gluon anomalies. Allowing for the scale invariance breaking by these terms has a decisive effect on the quarkonium-glueball mixing and noticeably changes the widths of glueball strong decays. Taking account of this additional source of the scale invariance breaking and its implications are the subject of the present work. It is also shown that in the decay of a glueball into four pions, the channel with two ρ-resonances dominates. Received: 11 January 2001 / Accepted: 25 January 2001  相似文献   

6.
In a class of direct gauge mediation with a perturbatively stable SUSY breaking vacuum, gaugino masses vanish at the leading order of SUSY breaking F-term. We study the allowed parameter space of the gauge mediation models. By imposing a Tevatron bound on the lightest chargino mass \( {m_{\tilde \chi_1^\pm }} \gtrsim 270\;{\text{eV}} \) and a warm dark-matter mass bound on the light gravitino mass m 3/2 ? 16 eV, we find that almost all the parameter space is excluded. Near future experiments may completely exclude, or possibly discover, the scenario.  相似文献   

7.
Mixed anomaly and gauge mediation (“gaugomaly” mediation) gives a natural solution to the SUSY flavor problem with a conventional LSP dark matter candidate. We present a minimal version of gaugomaly mediation where the messenger masses arise directly from anomaly mediation, automatically generating a messenger scale of order 50 TeV. We also describe a simple relaxation mechanism that gives rise to realistic μ and terms. B is naturally dominated by the anomaly-mediated contribution from top loops, so the μ- sector only depends on a single new parameter. In the minimal version of this scenario the full SUSY spectrum is determined by two continuous parameters (the anomaly-and gauge-mediated SUSY breaking masses) and one discrete parameter (the number of messengers). We show that these simple models can give realistic spectra with viable dark matter.  相似文献   

8.
We give explicit expressions for the amplitudes associated with the supersymmetric (SUSY) contributions to the process in the context of SUSY extensions of the standard model (SM) with non-universal soft SUSY breaking terms. From experimental data we deduce limits on the squark mass insertions obtained from different contributions (gluinos, neutralinos and charginos). Received: 20 April 2001 / Revised version: 14 December 2001 / Published online: 5 April 2002  相似文献   

9.
The possibility that supersymmetry (SUSY) could be broken in a metastable vacuum has recently attracted renewed interest. In these proceedings we will argue that metastability is an attractive and testable scenario. The recent developments were triggered by the presentation of a simple and calculable model of metastable SUSY breaking by Intriligator, Seiberg and Shih (ISS), which we will briefly review. One of the main questions raised by metastability is, why did the universe end up in this vacuum. Using the ISS model as an example we will argue that in a large class of models the universe is automatically driven into the metastable state during the early hot phase and gets trapped there. This makes metastability a natural option from the cosmological point of view. However, it may be more than that. The phenomenologically required gaugino masses require the breaking of R-symmetry. However, in scenarios with a low supersymmetry breaking scale, e.g., gauge mediation a powerful theorem due to Nelson and Seiberg places this at odds with supersymmetry breaking in a truely stable state and metstability becomes (nearly) inevitable. Turning around one can now experimentally test whether gauge mediation is realised in nature thereby automatically testing the possibility of a metastability of the vacuum. Indeed, already the LHC may give us crucial information about the stability of the vacuum.  相似文献   

10.
The effects of the scale dependent vacuum expectation values (VEVs) on the running masses of quarks and leptons in non-SUSY gauge theories have been considered by a number of authors. Here we use RGEs of the VEVs, and the gauge and Yukawa couplings in the MSSM to analytically derive new one loop formulas for the running masses above the SUSY breaking scale. Some of the masses exhibit a substantially different behaviour with respect to their dependence on the gauge and Yukawa couplings when compared with earlier formulas in the MSSM derived ignoring RGEs of VEVs. In particular, the masses of the first two generations are found to be independent of the Yukawa couplings of the third generation in the small mixing limit. New numerical estimates at the two loop level are also presented. Received: 30 July 1999 / Published online: 6 April 2000  相似文献   

11.
We consider fermion masses and mixings in a renormalizable SUSY SO(10) GUT with Yukawa couplings of scalar fields in the representation . We investigate a scenario defined by the following assumptions. (i) We have a single large scale in the theory, the GUT scale. (ii) The small neutrino masses are generated by the type I seesaw mechanism with negligible type II contributions. (iii) We assume a suitable form of spontaneous CP breaking that induces hermitian mass matrices for all fermion mass terms of the Dirac type. Our assumptions define an 18-parameter scenario for the fermion mass matrices for 18 experimentally known observables. Performing a numerical analysis, we find excellent fits to all observables in the case of both the normal and inverted neutrino mass spectrum.  相似文献   

12.
Motivated by the simple toroidal compactification of extra-dimensional SUSY theories, we investigate a partial N =2 supersymmetric(SUSY) extension of the standard model which has an N =2 SUSY sector and an N =1 SUSY sector. We point out that below the scale of the partial breaking of N = 2 to N = 1, the ratio of Yukawa to gauge couplings embedded in the original N =2 gauge interaction in the N =2 sector becomes greater due to a fixed point. Since at the partial breaking scale the sfermion masses in the N = 2 sector are suppressed due to the N = 2 non-renormalization theorem, the anomaly mediation effect becomes important. If dominant, the anomaly-induced masses for the sfermions in the N = 2 sector are almost UV-insensitive due to the fixed point. Interestingly, these masses are always positive, i.e. there is no tachyonic slepton problem. From an example model, we show interesting phenomena differing from ordinary MSSM. In particular, the dark matter particle can be a sbino, i.e. the scalar component of the N = 2 vector multiplet of U(1)_Y. To obtain the correct dark matter abundance, the mass of the sbino, as well as the MSSM sparticles in the N =2 sector which have a typical mass pattern of anomaly mediation, is required to be small. Therefore, this scenario can be tested and confirmed in the LHC and may be further confirmed by the measurement of the N = 2 Yukawa couplings in future colliders. This model can explain dark matter, the muon g-2 anomaly, and gauge coupling unification, and relaxes some ordinary problems within the MSSM. It is also compatible with thermal leptogenesis.  相似文献   

13.
We revisit the monophoton plus missing energy signature at \(e^+e^-\) colliders in supersymmetric (SUSY) models where the gravitino is very light. There are two possible processes which provide the signal: gravitino pair production and associated gravitino production with a neutralino, leading the monophoton final state via an additional photon radiation and via the neutralino decay, respectively. By using the superspace formalism, we construct a model that allows us to study the parameter space for the both processes. We show that the signal cross section and the photon spectra provide information on the masses of the SUSY particles as well as the SUSY breaking scale.  相似文献   

14.
We propose a new approach to generate messenger–matter interactions in deflected anomaly mediated SUSY breaking mechanism from typical holomorphic messenger–matter mixing terms in the Kahler potential. This approach is a unique feature of AMSB and has no analog in GMSB-type scenarios. New coupling strengths from the scaling of the (already known) Yukawa couplings always appear in this approach. With messenger–matter interactions in deflected AMSB, we can generate a realistic soft SUSY breaking spectrum for next-to-minimal supersymmetric standard model (NMSSM). Successful electroweak symmetry breaking conditions, which is not easy to satisfy in NMSSM for ordinary AMSB-type scenario, can be satisfied in a large portion of parameter space in our scenarios. We study the relevant phenomenology for scenarios with (Bino-like) neutralino and axino LSP, respectively. In the case of axino LSP, the SUSY contributions to \(\Delta a_\mu \) can possibly account for the muon \(g-2\) discrepancy. The corresponding gluino masses, which are found to below 2.2 TeV, could be tested soon at LHC.  相似文献   

15.
余扬政  陈熊熊 《物理学报》1993,42(2):214-222
构造了一类超势W=(1/n)gφn的二维O(N)对称超对称模型,详细计算了此类模型的Witten指数△。结果表明,当n为偶数时,超对称一定不能破缺,而当n为奇数时,超对称可以破缺。利用大N展开法,还研究了上述模型的超对称自发破缺机制,同时给出了相应的粒子谱。 关键词:  相似文献   

16.
In the minimal supersymmetric standard model (MSSM) contained in SUSY SO(10), top-- Yukawa unification is achieved at the intermediate mass scale GeV using the recent world average experimental value of the top-quark mass, GeV, which has been directly established by CDF and D0 experiments at the Tevatron Collider. It is also observed that the Yukawa couplings unification scale can be further decreased by taking lower input values of the top-quark mass. This trend indicates the possible existence of an intermediate symmetry breaking scale in SUSY SO(10). The present finding does not agree with the earlier notion that the third generation Yukawa couplings unification should occur at the GUT scale . Received: 22 September 1997 / Revised version: 22 January 1998 / Published online: 24 March 1998  相似文献   

17.
Searches were performed for topologies predicted by gauge-mediated supersymmetry breaking models (GMSB). All possible lifetimes of the next-to-lightest SUSY particle (NLSP), either the lightest neutralino or slepton, decaying into the lightest SUSY particle, the gravitino, were considered. No evidence for GMSB signatures was found in the OPAL data sample collected at centre-of-mass energies up to $\sqrt{s}=209 \mathrm{GeV}$ at LEP. Limits on the product of the production cross-sections and branching fractions are presented for all search topologies. To test the impact of the searches, a complete scan over the parameters of the minimal model of GMSB was performed. NLSP masses below $53.5 \mathrm{GeV}/c^2$ in the neutralino NLSP scenario, below $87.4 \mathrm{GeV}/c^2$ in the stau NLSP scenario and below $91.9 \mathrm{GeV}/c^2$ in the slepton co-NLSP scenario are excluded at 95% confidence level for all NLSP lifetimes. The scan determines constraints on the universal SUSY mass scale Λ from the direct SUSY particle searches of Λ>40, 27, 21, 17, $15 \mathrm{GeV}/c^2$ for messenger indices N=1,2,3,4,5 for all NLSP lifetimes.  相似文献   

18.
The first LHC results seem to disfavor, from the point of view of naturalness, any constrained MSSM realization with universal conditions at the SUSY-breaking scale. A more motivated scenario is given by split-family SUSY, in which the first two generations of squarks are heavy, compatible with a U(2)3 flavor symmetry. We consider this flavor symmetry to be broken at a very high scale and study the consequences at low energies through its RGE evolution. Initial conditions compatible with a split scenario are found, and the preservation of correlations from minimal U(2)3 breaking are checked. The various chiral operators in ΔF=2 processes are analyzed, and we show that, due to LHC gluino bounds, the (LL)(RR) operators cannot always be neglected. Finally, we also study a possible extension of the U(2)3 model compatible with the lepton sector.  相似文献   

19.
Using irreducible and reducible representations of the Dirac matrices, we study the two- and four-component quantum mechanical supersymmetric (SUSY) theories for ultrarelativistic fermions in .2 C 1/ dimensions ('graphinos') in a background uniform magnetic field perpendicular to their plane of motion. We then consider ordinary and parity-violating mass terms and identify the former as a soft SUSY breaking term and the latter as the hard SUSY breaking one.  相似文献   

20.
New NLO calculations have become available using resummed radiative corrections. Using these calculations we perform a global fit of the supergravity inspired constrained minimal supersymmetric model. We find that the resummed calculations show similar constraints as the LO calculations, namely that only with a relatively heavy supersymmetric mass spectrum of (1 TeV) the b– Yukawa unification and the rate can coexist in the large scenario. The resummed calculations are found to reduce the renormalization scale uncertainty considerably. The low scenario is excluded by the present Higgs limits from LEP II. The constraint from the Higgs limit in the plane is severe, if the trilinear coupling at the GUT scale is fixed to zero, but is considerably reduced for . The relatively heavy SUSY spectrum required by corresponds to a Higgs mass of GeV in the CMSSM. Received: 14 February 2001 / Revised version: 22 March 2001 / Published online: 29 June 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号