首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The proposed research describes the synthesis and characterization of platinum nanoparticles loaded on activated carbon (Pt-NP-AC) and its efficient application as novel adsorbent for efficient removal of reactive orange 12 (RO-12). The influences of effective parameters following the optimization of variables on removal percentages, their value was set as 0.015 g Pt-NP-AC, pH 1, contact time of 13 min. At optimum values of all variables at 25 and 50 mgL−1 of RO-12 enthalpy (ΔH0) and entropy (ΔS0) changes was found to be 59.89 and 225.076, respectively, which negative value of ΔG0 shows a spontaneous nature, and the positive values of ΔH0 and ΔS0 indicate the endothermic nature and adsorption organized of dye molecule on the adsorbent surface. Experimental data was fitted to different kinetic models including first-order, pseudo-second-order, Elovich and intra-particle diffusion models, and it was seen that the adsorption process follows pseudo-second-order model in consideration to intra-particle diffusion mechanism. At optimum values of all variables, the adsorption process follows the second-order kinetic and Langmuir isotherm model with adsorption capacity 285.143 mg g−1 at room temperature.  相似文献   

2.
The present study deals with the adsorption of arsenic ions from aqueous solution on polyaniline/rice husk (PAn/RH) nanocomposite. Batch studies were performed to evaluate the influence of various experimental parameters like pH, adsorbent dosage, contact time and the effect of temperature. Optimum conditions for arsenic removal were found to be pH 10, adsorbent dosage of 10 g/L and equilibrium time 30 minutes. Adsorption of arsenic followed pseudo-second-order kinetics. The equilibrium adsorption isotherm was better described by Freundlich adsorption isotherm model. The adsorption capacity (q max ) of PAn/RH for arsenic ions in terms of monolayer adsorption was 34.48 mg/g. The change of entropy (ΔS0) and enthalpy (ΔH0) was estimated at −0.066 kJ/(mol K) and −22.49 kJ/mol, respectively. The negative value of the Gibbs free energy (ΔG0) indicates feasible and spontaneous adsorption of arsenic on PAn/RH.  相似文献   

3.
The adsorption of methylene blue (MB) on graphene-based adsorbents was tested through the batch experimental method. Two types of graphene-based adsorbents as graphene oxide (GO) and reduced graphene oxide (RGO) were compared to investigate the best adsorbent for MB removal. So that optimizing the MB removal for the selected type of graphene-based adsorbent, the diverse experimental factors, as pH (2–10), contact time (0–1440 min), adsorbent dosage (0.5–2 g/L), and initial MB concentration (25–400 mg/L) were analyzed. The conclusions indicated that the MB removal rised with an increase in the initial concentration of the MB and so rises in the amount of adsorbent used and initial pH. Maximum dye removal was calculated as 99.11% at optimal conditions after 240 min. Adsorption data were compiled by the Langmuir isotherm (R2: 0.999) and pseudo-second-order kinetic models (R2: 0.999). The Langmuir isotherm model accepted that the homogeneous surface of the GO adsorbent covering with a single layer. And the adsorption energy was calculated as 9.38 kJ mol−1 according to the D-R model indicating the chemical adsorption occurred. The results show that GO could be utilized for the treatment of dye-contaminated aqueous solutions effectively.  相似文献   

4.
Syzygium cumini L. leaf powder and Cd(II) loaded samples were characterized using FTIR and SEM techniques. The biosorption of cadmium ions from aqueous solution was studied in a batch adsorption system as a function of pH, contact time, adsorbate, adsorbent, anion and cation concentrations. The biosorption capacities and rates of transfer of cadmium ions onto S. cumini L. were evaluated. The kinetics could be best described by both linear and nonlinear pseudo-second order models. The isothermic data fitted to various models in the order Freundlich>Redlich-Peterson>Langmuir>Temkin. The maximum adsorption capacity of S. cumini L. leaves at room temperature was estimated to be 34.54 mg g−1. The negative values of ΔG0 indicated the feasibility of the adsorption process. The endothermic nature was confirmed by the positive value of the enthalpy change (ΔH0=3.7 kJ mol−1). The positive value of entropy change (ΔS0=16.87 J mol−1 K−1) depicted internal structural changes during the adsorption process.  相似文献   

5.
The present study explains the preparation and application of sulfuric acid–treated orange peel (STOP) as a new low-cost adsorbent in the removal of methylene blue (MB) dye from its aqueous solution. The effects of temperature on the operating parameters such as solution pH, adsorbent dose, initial MB dye concentration, and contact time were investigated for the removal of MB dye using STOP. The maximum adsorption of MB dye onto STOP took place in the following experimental conditions: pH of 8.0, adsorbent dose of 0.4 g, contact time of 45 min, and temperature of 30°C. The adsorption equilibrium data were tested by applying both the Langmuir and Freundlich isotherm models. It is observed that the Freundlich isotherm model fitted better than the Langmuir isotherm model, indicating multilayer adsorption, at all studied temperatures. The adsorption kinetic results showed that the pseudo-second-order model was more suitable to explain the adsorption of MB dye onto STOP. The adsorption mechanism results showed that the adsorption process was controlled by both the internal and external diffusion of MB dye molecules. The values of free energy change (ΔG o) and enthalpy change (ΔH o) indicated the spontaneous, feasible, and exothermic nature of the adsorption process. The maximum monolayer adsorption capacity of STOP was also compared with other low-cost adsorbents, and it was found that STOP was a better adsorbent for MB dye removal.  相似文献   

6.
A basic investigation on the removal of Pb(II) ions from aqueous solutions by using activated tea waste was conducted in batch conditions. An inexpensive and effective adsorbent was developed from waste tea leaves for the uptake of Pb(II) from aqueous solution. The influence of different experimental parameters—shaking time, particle size, adsorbent dose, initial pH, temperature, etc.—on lead uptake was evaluated. Lead is adsorbed by the developed adsorbent up to maximum of 99.7%. The initial Pb(II) concentrations were 5, 10, 15 and 20 mg/l in the experiment. The adsorption was found to be exothermic in nature. The Langmuir, Freundlich and Tempkin isotherm models were tried to represent the equilibrium data of Pb(II) adsorption. The adsorption data was fitted very well to the Langmuir isotherm model in the studied concentration range of Pb(II) adsorption. Isotherms have been used to determine thermodynamic parameters of the process: free energy change (ΔG°), enthalpy change (ΔH°) and entropy change (ΔS°). Column experiments were performed to study the practical applicability of the system. The kinetics and the factors controlling the adsorption process were also discussed. Activated tea waste is a better adsorbent compared to other adsorbents available in literature.  相似文献   

7.
Removal of Cu2+ and Pb2+ from aqueous solutions by adsorption onto amidoximated bacterial cellulose (Am-BC) was investigated. The effects of pH, initial concentration, contact time and temperature were studied in batch experiments. The pseudo-first and pseudo-second orders and intraparticle diffusion equation were used to evaluate the kinetic data and the constants were determined. The experimental data fits well to the pseudo-second order kinetic model, which indicates that the chemical adsorption is the rate-determining step, instead of mass transfer. The equilibrium adsorption data were described by the Langmuir, Freundlich, and Temkin isotherms. The Am-BC showed a better fit to the Langmuir isotherm. The separation factor (R L ) revealed the favorable nature of the isotherm. The thermodynamic parameters (ΔH ads0, ΔS ads0, ΔG ads0) for Cu2+ and Pb2+ adsorption onto Am-BC were also determined from the temperature dependence. The values of enthalpy and entropy indicated that this process was spontaneous and exothermic. The experimental studies indicate that Am-BC would be a potential effective adsorbent to remove the metal ions from wastewater.  相似文献   

8.
The inhibition effect of tween-85 on the corrosion of cold rolled steel (CRS) in 1.0 M hydrochloric acid (HCl) was studied by weight loss and potentiodynamic polarization methods. The results show that tween-85 is a good inhibitor in 1.0 M HCl and its maximum inhibition efficiency (IE) is 92% at very low concentration. Its adsorption obeys the Langmuir adsorption isotherm equation. The thermodynamic parameters of adsorption enthalpy (ΔH 0), adsorption free energy (ΔG 0) and adsorption entropy (ΔS 0) were calculated and discussed. Polarization curves show that tween-85 acts as a mixed-type inhibitor in hydrochloric acid. IE values obtained from weight loss and polarization are consistent. The adsorbed film on a CRS surface containing an optimum dose of tween-85 was investigated by Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and atomic force microscope (AFM). An inhibitive mechanism is proposed from the viewpoint of adsorption theory.  相似文献   

9.
This study examines the adsorption behavior of methylene blue (MB) from aqueous solutions onto chemically activated halloysite nanotubes. Adsorption of MB depends greatly on the adsorbent dose, pH, initial concentration, temperature and contact time. The Langmuir and Freundlich models were applied to describe the equilibrium isotherms and the Langmuir model agrees very well with experimental data. The maximum adsorption capacities for MB ranged from 91.32 to 103.63 mg·g−1 between 298 and 318 K. A comparison of kinetic models applied to the adsorption data was evaluated for pseudo-first-order, pseudo-second-order, Elovich and intra-particle diffusion equation. The results showed the adsorption process was well described by the pseudo-second-order and intra-particle diffusion mode. Thermodynamic parameters suggest that the adsorption is spontaneous and endothermic. The obtained results indicated that the product had the potential to be utilized as low-cost and effective alternative for dye removal in wastewater.  相似文献   

10.
Corrosion inhibition of mild steel in acidic media by Basic yellow 13 dye   总被引:1,自引:0,他引:1  
The inhibition performance of Basic yellow 13 dye on mild-steel corrosion in hydrochloric acid solution was studied at 25 °C using weight loss and electrochemical techniques. The effect of inhibitor concentration on inhibition efficiency has been studied. Inhibition efficiency increased with increase of Basic yellow 13 concentration. The results showed that this inhibitor had good corrosion inhibition even at low concentrations (95% for 0.005 M Basic yellow 13) and its adsorption on mild-steel surface obeys Langmuir isotherm. ΔG ads was calculated and its negative value indicated spontaneous adsorption of the Basic yellow 13 molecules on the mild-steel surface and strong interaction between inhibitor molecules and metal surface. The value of ΔG ads was less than 40 kJmol−1, indicating electrostatic interaction between the charged inhibitor molecules and the charged metal surface, i.e., physical adsorption.  相似文献   

11.
Mussel-inspired chemistry was usefully exploited here with the aim of developing a high-efficiency, environmentally friendly material for water remediation. A micro-structured material based on polydopamine (PDA) was obtained by using liposomes as templating agents and was used for the first time as an adsorbent material for the removal of methylene blue (MB) dye from aqueous solutions. Phospholipid liposomes were made by extrusion and coated with PDA by self-polymerization of dopamine under simple and mild conditions. The obtained Liposome@PDA microspheres were characterized by DLS and Zeta potential analysis, TEM microscopy, and FTIR spectroscopy. The effects of pH, temperature, MB concentration, amount of Liposome@PDA, and contact time on the adsorption process were investigated. Results showed that the highest adsorption capacity was obtained in weakly alkaline conditions (pH = 8.0) and that it could reach up to 395.4 mg g−1 at 298 K. In addition, adsorption kinetics showed that the adsorption behavior fits a pseudo-second-order kinetic model well. The equilibrium adsorption data, instead, were well described by Langmuir isotherm. Thermodynamic analysis demonstrated that the adsorption process was endothermic and spontaneous (ΔG0 = −12.55 kJ mol−1, ΔH0 = 13.37 kJ mol−1) in the investigated experimental conditions. Finally, the applicability of Liposome@PDA microspheres to model wastewater and the excellent reusability after regeneration by removing MB were demonstrated.  相似文献   

12.
Adsorption isotherms in bleaching hazelnut oil   总被引:1,自引:2,他引:1  
Adsorption isotherms in bleaching hazelnut oil were determined to investigate the applicability of the Langmuir and Freundlich equations and to elucidate the adsorption characteristics of oil on bentonite EY-09 (Bensan Co. Ltd., Edirne, Turkey). The degree of bleaching was monitored spectrophotometrically. Absorbance measurements were carried out to investigate the adsorption force of clay during bleaching of hazelnut oil with 0.3, 0.5, 0.7, and 0.9 wt% clay at 50, 60, 70, 80, and 90°C. Bentonite EY-09 was used as the bleaching clay (adsorbent). Plots of log(x/m) vs. log X e (for the Freundlich isotherm) and X e /(x/m) vs. X e (for the Langmuir isomtherm) were made (where x is the amount of pigment removed per unit mass of the adsorbent, m, and X e is the equilibrium concentration of the pigment). The Freundlich constants were found to increase with temperature for a given oil/bleaching agent ratio, showing the formation of more active sites on the adsorbent with a rise in temperature. Since the heat evolved during adsorption (0.32–1.03 kJ mol−1) was less than 20 kJ mol−1, the forces between the adsorbent and adsorbate appeared to be van der Waals forces. This type of adsorption is defined as physical or van der Waals adsorption. The results obtained show good agreement with the Freundlich isotherm, indicating that the adsorption of the pigment from the oil proceeds by monolayer formation on the surface of the adsorbent.  相似文献   

13.
In the present study, a synergistic extraction mixture, primary amine N1923 (RNH2) and Cyanex925 (B), was loaded on PTFE powder to prepare PTFE Selective Resin and was employed for the adsorption of zinc, cadmium, and copper from chloride medium. The effects of shaking time, resin amounts, concentration of metal ions, and experimental temperature on the distribution coefficients were determined. The stoichiometry of the adsorbed complexes was determined to be MCl2·(1/2)RNH2·B with the Selective Resin. The equilibrium constants and thermodynamic quantities (ΔH, ΔG, and ΔS) were calculated. Furthermore, the Freundlich isotherm proved to be more suitable than the Langmuir isotherm to indicate the effect of concentration of M2+ on the adsorption with PTFE Selective Resin.  相似文献   

14.
BACKGROUND: The removal of cationic dyes from wastewater is of great importance. Three zeolites synthesized from coal fly ashes (ZFAs) were investigated as adsorbents to remove methylene blue (MB), a cationic dye, from aqueous solutions. Experiments were conducted using the batch adsorption technique under different conditions of initial dye concentration, adsorbent dose, solution pH, and salt concentration. RESULTS: The adsorption isotherm data of MB on ZFAs were fitted well to the Langmuir model. The maximum adsorption capacities of MB by the three ZFAs, calculated using the Langmuir equation, ranged from 23.70 to 50.51 mg g?1. The adsorption of MB by ZFA was essentially due to electrostatic forces. The measurement of zeta potential indicated that ZFA had a lower surface charge at alkaline pH, resulting in enhanced removal of MB with increasing pH. MB was highly competitive compared with Na+, leading to only a < 6% reduction in adsorption in the presence of NaCl up to 1.0 mol L?1. Regeneration of used ZFA was achieved by thermal treatment. In this study, 90–105% adsorption capacity of fresh ZFA was recovered by heating at 450 °C for 2 h. CONCLUSION: The experimental results suggest that ZFA could be employed as an adsorbent in the removal of cationic dyes from wastewater, and the adsorptive ability of used ZFA can be recovered by thermal treatment. Copyright © 2010 Society of Chemical Industry  相似文献   

15.
《分离科学与技术》2012,47(3):444-455
ABSTRACT

The study aims to use waste plastic PET bottles to recover terephthalic acid for preparing copper-1,4-benzenedicarboxylate, which was then utilized as an adsorbent for removal of methylene blue (MB) from aqueous solutions after carefully characterizing by XRD, FTIR, TGA, SEM, and EDX. The optimum conditions were established as pH = 6, 25°C, adsorbent dose of 1 g L?1, contact time of 20 min, and agitation speed of 150 rpm. The adsorption process was spontaneous, exothermic, fitting well to Langmuir isotherm model with the maximum adsorption capacity of 41.01 mg g?1 and more suitable to be described by the pseudo first-order kinetic model. It was indicated that the physical adsorption plays a leading role in the adsorption process. The recycling study was also conducted to confirm the long-term use of the synthesized adsorbent.  相似文献   

16.
A latex sponge is modified by chitosan, tannic acid, and silane coupling agent KH550 to prepare an oleophobic sponge adsorbent, which can adsorb different kinds of charged dyes and Cu2+. The static adsorption capacity of the latex sponge before and after modification to methyl orange (MO) (negative charge), rhodamine B (RB) (neutral), methylene blue (MB) (positive charge), and Cu2+ under different initial concentration, pH, and reaction temperature are investigated, and simulations of adsorption kinetics and isotherms are performed. The modified latex sponge improves the overall adsorption capacity along with the initial concentration and increases reaction temperature. The adsorption capacity of the adsorbent expands; when the pH is low, it is beneficial to adsorb MO and RB, and when the pH is high, it is favorable for the adsorption of MB and Cu2+. Adsorption kinetics and isotherm data show that the isotherm dates of pure latex sponge conform to the Langmuir isotherm model, while the isotherm dates of modified latex sponge conform to the Freundich isotherm model; however both of them are more fitted with the pseudo-second-order adsorption model, and the chemical adsorption is the main one.  相似文献   

17.
Our previous work has reported that an inorganic nano-network of palygorskite with multiporous structure can be fabricated from rigid nano-rods by ion beam bombardment and has better adsorption capability than nano-rods. Here, this dispersed modified nano adsorbent was characterized by Fourier Transform Infrared (FTIR) spectroscopy and Scanning Electron Microscope (SEM). The adsorption property of methylene blue (MB) onto this adsorbent was investigated. It was found that the adsorption capacity increased with contact time, pH, MB initial concentration, respectively, and then reached an equilibrium. Moreover, the effect of pH on the adsorption was strongly determined by zeta potential. The adsorption kinetics of MB was dominated by the pseudo-second-order reaction model, and the adsorption isotherms fit the Freundlich isotherms better than the Langmuir isotherms. Three temperatures (293 K, 303 K, 313 K) were set for describing the thermodynamic parameters (ΔHθ, ΔSθ, and ΔGθ), which indicated that the adsorption was spontaneous and exothermic. Lastly, the mechanism of the influence of ionic strength on the adsorption was discussed.  相似文献   

18.
The adsorption of lauric, myristic and stearic acids on rice hull ash (RHA) from isooctane as solvent was studied and conformed to a Langmuir isotherm. Monolayer coverage was determined to be 35.7±2.5, 43.5±2.2 and 36±5 mg/g, respectively. The free energy of adsorption, †G°, for the adsorption was determined to be-6.64,-6.23 and-6.49 kcal mol−1 for the adsorbates, respectively. The equilibrium parameter indicated that RHA is a good adsorbent for the three fatty acids examined.  相似文献   

19.
Superabsorbent hydrogels composites based on the biopolymer starch (ST) and rice husk ash (RHA) were successfully developed and tested towards the removal of methylene blue (MB), a cationic dye. RHA content hit the morphology, mechanical and water uptake properties of the composite. Batch adsorption experiments, carried out under pH 5 at 33 °C and with 2000 mg L?1 as the initial concentration of MB, showed that at 5 wt% RHA the composite exhibited a remarkable adsorption capacity reaching up to 1906.3 mg g?1 within 60 min. The adsorption kinetics followed the pseudo-second-order model and intraparticle diffusion was involved in this process. The Langmuir adsorption isotherm suggested a monolayer formation and spontaneous process. Thermodynamic parameters confirmed the spontaneity of the adsorption and suggested electrostatic interaction among the cationic dye molecules and the anionic adsorption sites on the adsorbent surface. FTIR analysis confirmed the adsorption process occurs via electrostatic mechanism associated with hydrophobic interactions. The adsorbents showed reusability with slight loss of adsorption capacity in five consecutive adsorption/desorption cycles. These results demonstrate ST/RHA superabsorbent composite as a low-cost, eco-friendly, robust and powerful adsorbent material for wastewater remediation.  相似文献   

20.
Arsenic poisoning is a major problem in today's life. To reduce its concentration in drinking water, different metal based compounds were explored as arsenic adsorbents. In the present study, copper (II) oxide nanoparticles were prepared by thermal refluxing technique and used as an adsorbent for arsenic removal from water. Characterization of the adsorbent using TEM, BET, XRD and FTIR implied that the prepared adsorbent was in nano size and had excellent adsorption behavior with surface area of 52.11 m2/g. Systematic adsorption experiments were carried out with different process parameters such as contact time, adsorbent mass, pH, temperature and stirring speed and found that copper (II) oxide had very good efficiency towards arsenic adsorption. Thermodynamic parameters and adsorption kinetics were studied in detailed to know the nature and mechanism of adsorption. Results showed that the adsorption process followed pseudo second order kinetic and endothermic behavior. Adsorption equilibrium was studied with Langmuir and Freundlich isotherm models. The adsorption process followed Langmuir isotherm with an adsorption capacity of 1086.2 μg/g. A regeneration study was proposed in order to reuse the adsorbent for better economy of the process. Finally, a process design calculation is reported to know the amount of adsorbent required for efficient removal of arsenic from aqueous medium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号