首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The luminous polypropylene fiber based on long afterglow luminescent material Sr2MgSi2O7:Eu2+,Dy3+ was prepared by melt-spinning process. Micro-morphology, phase composition, crystal structure, spectral features and afterglow properties of the luminescent fiber were tested and analyzed. The results indicated that the fiber had independent superposition phase features of both Sr2MgSi2O7:Eu2+,Dy3+ and polypropylene. The range of its excitation wavelength was located between 250–450 nm; therefore, the luminescent fiber could be excited by ultraviolet or visible light. It could emit blue light of 460 nm wavelength after excitation, which was caused by the 5d-4f transition of Eu2+ ions within the host lattice. The initial luminescent intensity was more than 0.8 cd/m2, and afterglow life lasted 7 h. The afterglow decay was composed of rapid-decaying and slow-decaying processes, and the decay characteristics depended on the depth and concentration of trap level in the Sr2MgSi2O7:Eu2+,Dy3+.  相似文献   

2.
Long afterglow photoluminescent materials Sr2MgSi2O7 dopeo With Eu^2 ,Dy^3 were prepared by sol-gel method. The synthesized samples were characterized by X-ray diffraction. The excitation spectrum, emission spectrum and long decay curve were measured and analyzed. XRD pattern indicates that phosphor is with Sr2MgSi2O7 crystal structure. The wide range of excitation wavelength indicates that luminescent material can be excited by light from ultraviolet ray to visible light. The main peak of emission spectrum is located at 466nm. Sample excited by visible light can emit bright blue light, and the afterglow time lasts more than 8h.  相似文献   

3.
Long afterglow phosphors MAl2O4:Eu^2+ , Dy^3+ (M = Ca, Sr, Ba) were synthesized by microemulsion method, and their crystal structure and luminescent properties were compared and investigated. XRD patterns of samples indicate that phosphors CaAl2O4:Eu^2+, Dy^3+ and SrAl2O4 : Eu^2+, Dy^3+ are with monoelinie crystal structure and phosphor BaAl2O4:Eu^2+ , Dy^3+ is with hexagonal crystal structure. The wide range of excitation spectrum of phosphors MAl2O4: Eu^2 + , Dy^3+ (M = Ca,Sr, Ba) indicates that the luminescent materials can he excited by light from ultraviolet ray to visible light and the maximum emission wavelength of phosphors MAl2O4:Eu^2+ , Dy^3+ (M = Ca, Sr, Ba) is found mainly at λem of 440 nm (M = Ca), 520 nm (M = Sr) and 496 nm (M = Ba) respectively, the corresponding colors of emission light are blue, green and eyna-green respectively. The afterglow decay tendency of phosphors can he summarized as three processes: initial rapid decay, intermediate transitional decay and very long slow decay. Afterglow decay curves coincide with formula I = At^ - n, and the sequence of afterglow intensity and time is Sr 〉 Ca 〉 Ba.  相似文献   

4.
5.
SrZnO2 : Eu^3 + , Li^+ phosphor powder by long wavelength UV excitation was synthesized by conventional solid-state reaction method. XRD and PL were employed to characterize their properties. The resuits show that Eu^3+ ions preferentially occupy Sr^2+ asymmetry cationic sites, thus emitting 612 nm red light originated from ^5D0 to ^7F2 transition. The luminescent intensity can be greatly enhanced with incorporation of Li^+ ions. The excitation efficiency in range of 350 - 400 nm also increases greatly due to incorporating Li ^+ ions. SrZnO2 : Eu^3 + , Li^+ is a promising redemitting phosphor by long wavelength UV excitation.  相似文献   

6.
Calcium magnesium chlorosilicate doped by europium, Ca8Mg(SiO4)4Cl2: Eu^2+, was prepared by the solid state reaction at high temperature. The compound obtained is pure Ca8Mg(SiO4)4Cl2 phase with cubic structure. Its average particle size is 5 μm, and it has good dispersity and morphological form. The excitation spectrum of Ca8Mg(SiO4)4Cl2: Eu^2+ is a wide band, which covers from 270 to 480 nm. The emission spectrum is also a wide band peaked at 510 nm. The luminescent intensity reaches to the maximum when the concentration of Eu^2 + is 2%. The wavelength of emission and excitation of the phosphor with various Eu^2 + contents keeps constant. This spectrum range matches violet and blue LED chips very well, and its strong luminescence intensity is suitable for a green phosphor of tricolor phosphor of white light LED.  相似文献   

7.
New long phosphorescent phosphors Ba1-x CaxAl2O4:Eu^2 , Dy^3 with tunable color emission were prepared and studied. The emission spectra show that the tuning range of the color emission of the phosphors is between 498 and 440 nm, which is dependent on x, under the excitation of UV. The wavelength of the afterglow increases with the increasing of x until x equals 0.6. The XRD patterns show that the single phase limit in the phosphors is below x value of 0.4.The Thermolumineseence spectra were measured to investigate the traps created by the doping of Dy^3 .  相似文献   

8.
The long afterglow phosphor CaAl2Si2O8:Eu^2+ , Dy^3+ was prepared by a sol-gel method. The sol-gel process and the structure of the phosphor were investigated by means of X-ray diffraction analysis (XRD). It is found that the single anorthite phase formed at about 1000 %, which is 300 % lower than that required for the conventional solid state reaction. The obtained phosphor powders are easier to grind than those of solid state method and the partical size of phosphor has a relative narrow distribution of 200 to 500 nm. The photoluminescence and afterglow properties of the phosphor were also characterized. An obvious blue shift occurs in the excitation and emission spectra of phosphors obtained by sol-gel and solid state reaction methods. The change of the fluorescence spectra can be attributed to the sharp decrease of the crystalline grain size of the phosphor resulted from the sol-gel technique.  相似文献   

9.
The non-grinding long afterglow material SrAl2O4:Eu^2+ , Dy^3+ was prepared by combustion method in home mierowave oven direetly, after dispersant, frother, eomburent, and mineralizer were added into the reacting system. XRD analysis showed that the powders were nearly pure SrAl2O4 phase with few other phases, and the size of the grain was 41.1 nm. Fluoreseenee speetrum results indieated that there were 2 exeitation peaks loeated at 345 and 400 nm, and the emission peak loeated at 516 nm, afterglow lasted up to 30 min or more. The mierowave eombustion method has advantages of less time, low temperature and no grinding process, and the material made by the method has good luminescent property.  相似文献   

10.
Luminescence properties of nitride red phosphor for LED   总被引:1,自引:1,他引:0  
Eu^2+-doped ternary nitride phosphor, Sr2Si5N8:Eu^2+, was synthesized using the high temperature solid-state method. The X-ray diffraction (XRD) pattern showed that Sr2Si5N8 single phase was obtained. The lattice parameters shrank because the radius of Eu^2+ was smaller than that of Sr^2+. The emission spectra showed a broad emission band. With an increase in Eu^2+ concentration, the emission peak position was redshifted. The excitation spectra showed two excitation bands originating from the host and the 4f^7→4f^6 5d^1 transition of Eu^2+ ions Compared with the luminescent characteristic of Sr2Si5N8:Eu^2+ and CaS:Eu^2+ phosphors, at different temperatures, it was noted that the intensity of the two phosphors reduced gradually with an increase in temperature. The intensity of Sr2Si5N8:Eu^2+ phosphor was stronger than that of CaS:Eu^2+, which indicated that the luminescent characteristic of the former was better than that of the latter.  相似文献   

11.
Polypropylene composite nonwovens containing rare-earth strontium aluminates Sr Al2O4:Eu2+,Dy3+ and functional additives were fabricated by the spun-bonded technique.The optical properties, morphology and mechanical properties of the samples were characterized.Results from scanning electron microscopy photographs(SEM) indicated that the surface of the fiber was destroyed by the addition of rare earth luminescent materials lightly but the thickness of the fiber was uniform.Differential scanning calorimetry results showed that pure polypropylene has the double crystallization peak at 162.3 and 165.1 °C.Studies from X-ray diffraction showed that the nonwoven prepared with the luminescent materials contained the α-monoclinic crystal and β crystalline phase.Furthermore, the afterglow properties were tested, which showed that the afterglow curve of the luminous nonwoven was similar to that of strontium aluminate, and the intensity was more intensive than luminous nonwoven at the beginning.The nonwoven fabricated with the luminescent material did not affect the crystal lattice of the polymer making the materials have potential applications in fluorescent lamps and field emission displays(FEDs).  相似文献   

12.
The (Ba1- x, Srx ) 2 SiO4 : EU^2+ green-emitting phosphors were synthesized by conventional solid-state reaction in a CO-reductive atmosphere, and their luminescent properties were investigated. The XRD data show that the Ba/Sr ratio not only affects the lattice parameters, but also influences the emission peak. The excitation spectra indicate that this phosphor can be effectively excited by UV light from 370 to 470 nm. The emission band is due to the 4f^65d^1→4f^7 transition of the Eu^2+ ion. With an increase in x, the emission band shifts to longer wavelength and the reason was discussed. The emission spectra exhibit a satisfactory green performance under different excitation wavelength(380,398,412,420,460 nm). (Ba1- x, Srx ) 2 SiO4 : EU^2+ is a promising phosphor for green white-lighting-emission diode by ultraviolet chip.  相似文献   

13.
YAl3 (BO3)4: Eu^3+ phosphors were prepared by the conventional solid state reaction. The phase structure and morphology were investigated by X-ray diffraction (XRD) and scanning electron microscope (SEM). Doping YAl3(BO3)4: Eu^3+ phosphors with concentration of Eu^3+ ions of 0, 2, 5, 8 and 10 mol% were studied and their luminescent properties at room temperature were discussed. The excitation spectrum of Y0.95Eu0.05Al3(BO3)4 was composed of a broad band centered at about 252 nm and a group of lines in the longer wavelength region. In the emission spectra, the peak wavelength was about 614 nm under a 252 nm UV excitation. The optimal doping concentration of Eu^3+ ions in YAl3(BO3)4: Eu^3+ phosphors was 8 mol%.  相似文献   

14.
The luminescent properties of Eu^3+doped Ca2SiO4 red phosphors synthesized by the flux fusion reaction method were investigated. It was found that the excitation spectrum included two regions: the weak excitation band below 325 nm and strong narrow peaks above 325 nm. The main peak of the excitation band was located at 400 nm. The peaks located at 290 nm were assigned to the combination of the charge transfer transition of O-Eu, peaks above 325 nm (325, 385, 400, 470, 511, and 539 nm) were assigned to the f-f transitions of Eu^3+. The emission spectrum was dominated by the red peak located at 612 nm due to the electric dipole transition of ^5D0-^7F2. In addition, the effects of the Eu^3+ content and charge compensators of Li^+, Na^+, K^+, and Cl^- ions on the emission intensity were investigated. The experiment results suggested that the strongest emission was obtained when the concentration of the Eu^3+ ions was 0.3 mol^-1, and Li^+ ions gave the best improvement to enhance the emission intensity. Ca2SiO4:Eu^3+, Li^+ was thus suitable for low-cost trichromatic white light emitting diodes (WLED) based on UV InGaN chip.  相似文献   

15.
Sr2SiO4:xEu^2+ phosphors were synthesized through the solid-state reaction technique. The crystal phase of Sr2SiO4:xEu^2+ phosphor manipulated by Eu^2+ concentration was studied. The phase transited from β to α' in Sr2SiO4:xEu^2+ phosphor with increasing europium concentration. The single β phase was formed as x≤005 and changed α' phase when x〉0.01. The emission spectrum of the β-Sr2SiO4:Eu^2+ phosphor consisted of a green-yellow broadband peaking at around 540 nm and a blue band at 470 nm under near ultraviolet excitation. The white LEDs by combining near ultraviolet chips with β-Sr2SiO4:Eu^2+ phosphors were fabricated. The luminous efficiency (15.7lm/W) was higher than α'-Sr2SiO4:Eu^2+ phosphor white LED.  相似文献   

16.
The Ba3Y2(BO3)4:Eu^3+ phosphor was synthesized using a high temperature solid-state reaction method and the luminescent characteristics were investigated. The emission spectrum exhibited one strong red emission at 613 nm, corresponding to the electric dipole 5D0-TF2 transition of Eu^3+, under 365 nm excitation. The excitation spectrum of 613 nm indicated that the Ba3Y2(BO3)n:Eu^3+ phosphor was effectively excited by ultraviolet (UV) (254, 365 and 400 nm) and blue (470 nm) light. The effect of Eu^3+ concentration on the 613 nm emission of the Ba3Y2(BO3)n:Eu^3+ phosphor was measured. The results showed that the emission intensity increased with increasing Eu^3+ concentration, and then decreased. The CIE color coordinates of Ba3Y2(BO3)4:Eu^3+ phosphor were x=0.641 and y=0.359 at 15 mol.% Eu^3+.  相似文献   

17.
SrAl2O4:Eu^2 ,Dy^3 phosphor was successfully synthesized by pseudoboehmite sol-gel method without hecessity of further ball-grinding. XRD results indicate that with the decreasing of the Sr/Al ratios the dominant host phases change from SrAl2O4 to Sr4Al14O25. The impure phases of Sr4Al2O7 but not of SraAl14O25 deteriorate the luminescent property of Sr-Al2O4: Eu^2 , Dy^3 , greatly.  相似文献   

18.
Rare earth strontium aluminate luminous fiber is a novel functional fiber. In order to investigate the influence of Al/Sr ratio on luminescence properties of xSrO·yAl2O3:Eu2+,Dy3+ luminous fibers, several kinds of rare earth strontium aluminate luminous fibers were prepared by using rare-earth strontium aluminate as the rare-earth luminescent material and fiber-forming polymers such as polymer polyethylene terephthalate(PET) as a matrix and combining them with functional additives. X-ray diffraction(XRD), fluorescence spectrophotometer, and afterglow brightness tester as well as microcomputer thermo-luminescence dosimeters were used to characterize the resulting samples. Results from XRD demonstrated that the phase of xSrO·yAl2O3:Eu2+,Dy3+ luminous fibers were different from one another as the Al/Sr ratio changed. Emission spectra of the samples with different Al/Sr ratios showed that emission intensity increased with the decrease of A1/Sr ratio at first then increased when it was over 2/1. From afterglow decay results, it could be found that Sr-rich sample showed lower luminance and shorter persistent time.  相似文献   

19.
As an improvement of reported Y2O2S:Tb^3+, a white-light long-lasting phosphor: Y2O2S:Tb^3+, Sm^3+ was prepared by the solid-state reaction. The photo-luminescence spectra showed that the position and shape of Tb^3+ and Sm^3+ emissions under UV excitation were similar in this host, which ensured a stable white emission color (daylight standard of IEC) under different excitations. The decay curves of co-doped samples indicated that the decay times of emissions of the two ions were close. The thermo-luminescence measurement suggested that the traps created by the doped Sm^3+ ions were helpful to postpone the white afterglow of co-doped samples. Therefore, the function of co-doped Sm^3+ ions was confirmed as improving the white emission colors of samples and acting as new trap centers.  相似文献   

20.
Highly efficient Sr2Si5N8:Eu^2+red emitting phosphor was successfully synthesized by a cost-effective direct silicon nitrida-tion and gas-reduction method. The effects of synthesis parameters, including reaction temperature, heating rate and gas species, on the crystal structure and photoluminescence of the prepared phosphors were studied. Single-phase Sr2Si5N8:Eu^2+phosphor was ob-tained at 1500℃ with a heating rate of 300℃/h under NH3-1 vol.%CH4 atmosphere using starting silicon and oxide powders. Silicon powder and high heating rate favored the achievement of the pure Sr2Si5N8 phase. Under near-UV to blue light excitation, the obtained Sr2Si5N8:Eu2+phosphor showed a board red emission band centered at about 625 nm, which agreed well with the phosphors prepared by the conventional solid-state reaction. The possible reaction mechanism was also proposed based on the experimental observations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号